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1.0 SUMMARY 

The key requirements to any empirically based study are to: (1) accurately measure and then 
compare the collected results in determining the result of the hypothesis being tested; and (2) 
collect a sample representative of the entities being studied. To address these requirements and 
their application to large scale analytical studies, we have developed and utilized an informatics 
tool for spectral registration, spectral and chromatographic alignment, visualization, and 
comparative analysis. Comprehensive and reproducible sample collection techniques were 
developed concomitantly with the informatics tool and used in multiple, independent studies for 
the validation and further development of generated software tools and approaches. Data from a 
dose-response study examining an organ specific environmental toxicant exposure was analyzed 
using the prototype software tool for discovery of Liquid Chromatography – Mass Spectometry 
(LC/MS)-based metabolomic biomarkers. This data set served as proof of concept in the 
development and illustration of the novel approach to spectral registration and visualization, and 
illustrates the rapid multi-sample analysis capability of the informatics tool. A variety of 
additional studies focused on volatile biomarker discovery, i.e., a murine model of infection to 
select agents, characterization of human and murine urine as it ages, human markers of age and 
ethnicity in axillary odors, and characterization of the binding between volatile ligands and 
murine major urinary proteins aided in algorithm and interface development for Gas 
Chromotography - Mass Spectometry (GC/MS) functionality implemented in the developed 
software. The final phase of this work focused on utilization of these analysis tools in 
combination with novel sampling techniques to create an end-to-end discovery pipeline for large- 
scale small molecule and volatile organic compound biomarker and differential profiling studies. 
This combination of biologically and environmentally-focused studies were successfully 
completed as final proof of concept for this work and demonstrate the universal utility of the 
approach. The results and data analysis of these five unique sets of experiments using the 
informatics tools are presented as chapters that answer the hypothesis that an informatics tool can 
be designed that provides spectral registration, spectral and chromatographic alignment, 
visualization, and comparative analysis for data generated from multiple analytical platforms,  
e.g., LC-MS and GC-MS. 
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2.0 INTRODUCTION 

2.1 Overview 

The key requirements to any empirically based study are to (1) accurately measure and then 
compare the collected results in determining the result of the hypothesis being tested, and (2) 
collect a sample representative of the entities being studied. To address this requirement and its 
application to large scale analytical studies, the research described here sought to develop and 
utilize a logically designed and successfully implemented informatics tool for spectral 
registration, spectral and chromatographic alignment, visualization, and comparative analysis in 
combination with reproducible and comprehensive sample collection techniques. This work 
incorporated multiple, independent studies for the development and validation of generated 
software tools and approaches. To both answer active research needs and aid in the development 
and illustration of the novel visualization and rapid multi-sample analysis capability of the tool 
for discovery of LC/MS-based metabolomic biomarkers, use of data from a dose-response study 
examining environmental toxicant exposures is also described. A variety of studies focused on 
volatile biomarker discovery were analyzed to aid in algorithm and interface development for 
GC/MS analysis. Experiments examined in support of this GC/MS analysis included: a murine 
model of infection to select agents, characterization of human and murine urine as it ages, human 
markers of age and ethnicity in axillary odors, and characterization of the binding between 
volatile ligands and murine Major Urinary Proteins (MUPs). The final phase of this work 
demonstrates utilization of the analysis tools and workflow developed in combination with both 
optimized and novel sampling techniques to create an end-to-end discovery pipeline for large- 
scale small molecule and volatile organic compound biomarker and differential profiling studies. 
A combination of biologically and environmentally-focused studies were assessed as final proof 
of concept for this analytical workflow and demonstrate the universal utility of the approach. 
Successful completion of the pipeline have facilitated and allowed the efficient and methodical 
analysis of multiple, large-scale small molecule and volatile organic compound based biomarker 
discovery and differential molecular profiling studies. 

2.2 Omic Profiling, Sampling Consideration, and Data Analysis Tools 

A brief overview of the various nuances in systems biology data space, analysis strategies, and 
sample collection considerations is required in order to adequately frame development and 
application of the analytical pipeline for large scale profiling studies which will be the focus of 
this proposal. Although the sciences of genomics and proteomics are peripheral to much of this 
research, detail on all three is described as the analysis approaches utilized for each are applicable 
to all, including metabolomics and volatile profiling. It is worth noting that a rich variety            
of data analysis and data mining software tools exist for genomics and proteomics in both open 
source format and from a myriad of vendors, in sharp contrast to the lack of comparable 
capability in the analysis of small molecule and volatile mass spectrometry-based differential 
profiling studies. It was this lack in availability for small molecule metabolomic and volatile 
informatics which served as the impetus and basis for much of the work proposed below. 

2.3 Gene Expression Profiling 

The unique gene expression profiles in different cells determine their overall functionality and 
phenotype. Phenotypic changes in response to perturbations resulting from external chemical, 
biological and physical insults are mediated by and the consequence of a concerted change in the 
expression of a large number of genes. Therefore, the global gene expression profile represents a 



3 
Distribution A. Approved for public release; distribution unlimited. 

88ABW-2015-1753; Cleared 07 April 2015 

unique signature of a specific cell state. By comparing gene expression profiles under different 
conditions, changes in a gene expression profile may be used for classification and predictive 
models for a variety of physiological and pathological states, as well as an indicator/predictor for 
the host response to various external and internal stimuli or insults. As has been previously 
demonstrated, gene expression changes elicited under different conditions are tightly regulated 
and highly distinctive [1-6]. Genomics studies have generated useful data highlighting the 
potential molecular mechanisms involved in many human diseases such as cancer, heart disease, 
chronic inflammatory disease, etc. [1-4], as well as providing better insights into the mode of 
action of different chemical toxicants [5, 6]. The Deoxyribonecleic Acid (DNA) microarray is a 
powerful and versatile tool for global gene expression profiling in biomedical research, which can 
be used without well-defined underlying hypotheses. It is therefore extremely useful in 
discovery-driven research in that it can provide mechanistic insights into various physiological or 
pathological processes. The expression profiles produced by microarray experiments represent 
the entire transcriptome (or a selected portion of it, dependent on the coverage of the array) of   
the cells or the tissue under a particular condition. 

Analysis of DNA microarray data for biomarker discovery normally involves feature selection 
and class discovery / class prediction using multivariate statistical methods and/or pattern 
recognition techniques [7-9]. The objective is to identify informative genes (i.e. a subset of  
genes that have undergone significant expression changes) for a specific condition, such as the 
onset of a disease or exposure to a chemical toxicant. Before the data analysis can be completed, 
the data set has to be “preprocessed” [10, 11]. The first step of data preprocessing involves data 
normalization to compensate for inter-array variations due to technical reasons. The next step is 
to remove the genes with low-quality signals using statistical methods or platform-specific 
algorithms [12]. This will assure that noise of the assay system can be effectively filtered out. 
Finally, different data transformation techniques (e.g. log-transformation, mean-centering, etc) 
may be applied to facilitate data manipulation in subsequent data analysis steps [13]. 

After the data is preprocessed, an exploratory visualization of the data may be performed to 
examine the general grouping of the samples using an unsupervised clustering method (e.g. 
hierarchical clustering, K-means clustering, self-organizing maps, or principal component 
analysis) [14, 15]. Since these unsupervised methods do not depend on any a priori assumption 
on class repartition, they will provide good information regarding the effects of various variables 
on gene expression profiles, as well as the presence of potential confounding factors. If the 
variable(s) of interest appears to be the most dominant factor governing the gene expression 
profiles, informative genes can readily be identified using traditional statistical methods (i.e. 
student t-test, Analysis of Variance (ANOVA), etc.) [16]. However if confounding factors with 
strong effects on gene expression exist, algorithms developed for DNA microarray analysis (i.e. 
Significance Analysis of Microarrays, Predictive Analysis of Microarray, supervised pattern 
recognition techniques or machine learning algorithms) [17-21] will be needed with appropriate 
re-sampling techniques for cross-validation [22, 23]. Despite the inclusion of the cross- 
validation step, over-fitting of the model may still occur [24-26], which will result in the 
selection of gene expression changes due to experimental artifacts and noises. Therefore, 
validation using a fully independent data set should be performed to ensure that the features 
selected are authentic informative genes. 

Identification of informative genes will allow one to focus on a smaller subset of genes with 
direct relevance to the problem of interest. For instance, genes that are differentially expressed 
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in test groups compared with control groups identified in DNA microarray experiments can be 
further validated by analyzing in more detail and in larger numbers of subjects using other 
technology platforms (i.e. quantitative real-time Reverse Transcription Polymerase Chain 
Reaction (RT-PCR)) [27]. After additional testing and validation using computational and 
experimental techniques, genes with the highest predictive power can be identified as potential 
biomarkers for a specific physiological or pathological state. 

2.4 Proteomic Profiling 

Proteomics is the large-scale study of proteins, particularly their structures and functions. The 
proteome in both humans and other higher life forms is orders of magnitude more complex than 
the genome. While the genome is a rather constant entity, the proteome differs from cell to cell 
and is constantly changing through its biochemical interactions with the genome and the 
environment. One organism will have radically different protein expression in different parts of 
its body, in different stages of its life cycle and under different environmental conditions. 
Numerous post translational modifications combined with amino acid substitutions have been 
reported for the myriad of proteins coded by the genome. Discovering these differentially 
expressed protein profiles along with their corresponding Post Translational Modifications 
(PTMs) is a critical step in understanding the molecular mechanisms regulating function in both 
single cells and systemically. One of the core tasks assigned to modern proteomics is the 
identification of differential biological markers that are definitive for various states of organism 
health (i.e. disease vs. no disease, successful treatment vs. unsuccessful treatment). Because 
levels of proteins in blood and urine can reflect an individual’s state of health or disease, 
proteomics is especially suitable for the identification of biomarkers [28]. The field of 
proteomics is still in development and various approaches for separating and identifying proteins 
are being validated. Additionally, separation and relative quantitation of complex protein 
mixtures remain two of the most challenging aspects of proteomics, as will be discussed briefly 
below. Sample preparation is a critical first step in any protein profiling experiment. Both the 
source of the sample as well as the subsequent processing steps are greatly dependent on the 
objectives of the study. Detecting and identifying all of the given proteins or peptides in a 
complex biological mixture such as serum or tissue media is an extremely difficult task due to 
both the wide dynamic range of protein expression levels (1012 variance in concentration) and the 
differing physical characteristics and resultant behavior of proteins during the separation process. 
In addition, in a mass spectral analysis, the ion signal of low concentration analytes can easily 
become saturated by highly abundant proteins, such as albumin, that are present in most raw 
biofluid samples. This signal suppression compromises the identification of low abundant 
proteins that are typically of highest interest in a biomarker discovery program. Multiple 
commercially available devices are available to assist in the depletion of up to the 20 most 
abundant proteins from serum/plasma samples, thereby facilitating detection of the less abundant 
proteins present. Other sample processing steps typically include a combination of the following: 
solubilization, fractionation, equalization, precipitation, desalting, and concentration. 

Several techniques are currently in wide spread use for proteomic profiling. Early Mass 
Spectrometry (MS)-based biomarker profiling had previously been largely focused on the Surface 
Extraction Laser Desorption/Ionization (SELDI) mass spectrometry technology (see [29] for        
a comprehensive review). Early publications on the success of this approach to detect disease 
fingerprints in complex samples were received with some degree of skepticism and critique given 
subsequent failed attempts to reproduce the results in addition to some obvious flaws in the 
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protocol design [30]. The high dimensionality of the data, small sample sizes, lack of rigorous 
analysis of technical and biological expressed. However, many reports employing SELDI Time 
of Flight (TOF) MS-based approaches demonstrated success in the early detection of many 
different cancers as well as other diseases [31-39]. Two dimensional (2D) gel electrophoresis, 
despite its 30-year history [40] and the many improvements that have been made to the 
technology over the years [41-44], is still faced with problems in reproducibility and 
comparability of individually generated gel images. Even with these challenges, many 
laboratories have successfully used this approach to sort out differential changes in complex 
protein mixtures and are routinely able to resolve over 1000 proteins on a single gel, representing 
an adequate sampling of the expressed phenotype of a specific sample. 2 dimensional (2D) gel 
separation of proteins also allows for the easy detection of critical posttranslational modifications 
and when performed on silver-stained gels, 2D gel electrophoresis is highly sensitive, detecting 
proteins down to the low ng levels. A new approach introduced in the past several years is 2D 
difference in-gel electrophoresis (2D-DIGE), a technique designed to minimize gel-to-gel 
variations. With 2D-DIGE, protein extracts from two different samples are covalently labeled 
with two different fluorescent dyes. The labeled samples are then mixed and subsequently 
separated on a single 2DE gel. The gel is subsequently scanned at different wavelengths 
revealing visually differentially expressed proteins as well as PTMs. Another recently emerging 
and powerful approach employs Beckman-Coulter’s Proteome PF 2D system combined with 
proprietary analogs [45-49]. This two dimensional separation of complex mixtures is performed 
using Isoelectric Focusing (IEF) in the liquid phase (first dimension) followed by Reverse-Phase 
High Pressure Liquid Chromatography (RP-HPLC) in the second dimension. On-line Electro 
Spray Ionization (ESI) TOF mass spectrometry (see Figure 1) enables detection even in third 
dimension [48]. The accompanying vendor supplied software package generates color-coded 
protein maps that are easy to interpret and the differential display of protein profiles enables clear 
visual differentiation of two samples. Unfortunately the existing Beckman software suite       
does not allow for the comparison of multiple samples as part of a larger study, requiring 
integration with outside bioinformatics and statistical tools typically relegated to genomic array 
analysis. 

To identify the chromatographically or electrophoretically separated proteins once they are 
digested with a suitable enzyme (i.e. trypsin), the resultant peptides are subjected to different MS 
techniques that may or may not include additional on-line liquid chromatography such as a  
strong cation exchange column to separate peptides before they enter the mass spectrometer. 
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Figure 1:  ESI LC/MS Acquired 
Example of three dimensionality seen in chromatographic / mass spectral data 
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The MS techniques used for protein identification can be classified by the type of mass 
spectrometer being utilized (quadrupole, TOF, ion trap, ion cyclotron resonance etc. as well as 
hybrid instruments) as well as by the ionization technique used as a source and interface with the 
HPLC. ESI and Matrix Assisted Laser Desorption Ionization (MALDI) are the two major 
techniques commonly used by researches for protein profiling, with nano-spray ionization being 
basically a nano- or reduced volume process of ESI.  Nano-spray offers a higher sensitivity 
versus ESI due to the increased efficiency of ionization [51, 52] and has become the defacto 
standard for LC-MS based proteomics. 

Other widely used approaches for protein profiling include techniques such as 2 dimensional 
liquid chromatography (2-D LC) and capillary electrophoresis [53]. In these experiments the 
complex mixtures of proteins are digested with a suitable enzyme (trypsin) followed by two 
physical separation techniques prior to ionization and MS detection. 2D LC systems typically 
consist of two columns, the first being a Strong Cation Exchange (SCX) column and the second 
a Reversed Phase (RP) or C18 column [54-58]. The peptides are initially loaded onto the SCX 
column and are gradually eluted onto the RP column using increasing salt steps with an 
aqueous/organic gradient between increasing salt concentrations. This approach has facilitated 
unambiguous identification of up to 1,500 proteins from one sample [59]. 

2.5 Metabolomic Profiling 

Metabolomics is a rapidly growing field used to characterize the metabolic profile of a specific 
tissue or biofluid. Metabolic profiling, originally pioneered by Jeremy Nicholson, Elaine 
Holmes, and John Lindon at the Imperial College in London [60] utilizing Nuclear Magnetic 
Resonance (NMR)-based analysis, has evolved to become one of the most common applications 
of LC-MS [61-63]. Metabolomics is an attractive approach to the study of time-related 
quantitative multivariate metabolic responses to pathophysiological processes by which 
biological and chemical agents, e.g., drugs, can cause perturbations in the concentrations and 
flux of endogenous metabolites involved in critical cellular pathways [64]. Thus, cells respond 
to toxic insult or other stressors by altering their intra-and/or extra-cellular environment in an 
attempt to maintain a homeostatic intracellular environment. 

This metabolic alteration is expressed as a "fingerprint" of biochemical perturbations 
characteristic of the type and target of a toxic insult or disease process [65]. These metabolic 
alterations are often seen in body fluids as changes in metabolic profiles in response to toxicity 
or disease, as the body attempts to maintain homeostasis by eliminating substances from the 
body. Therefore, because many biofluids can be easily obtained either non-invasively (urine) or 
minimally invasively (blood), they are typically used in metabolomic studies [66]. Additionally, 
if a significant number of trace molecules can be identified and monitored, the overall pattern 
produced may be more consistent and predictive than any single biomarker [67], which would 
prove of great value in the development of deployable devices for testing toxic or infectious 
exposures. 

2.6 Volatile Organic Compound (VOC)-Based Metabolomic Profiling 

A specific area of study within metabolomics is that focused on the volatile metabolites. These 
VOC- based metabolites generally have a boiling point less than 300°C and contain fewer than 
12 carbon atoms[68]. Clinicians frequently associate peculiar body odors with a disease state 
and for several disorders the odors are distinctive enough to be diagnostic [69, 70]. These odors 
are often composed of “organic volatiles” such as nutrients, metabolic intermediates, waste 
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products, environmental contaminants, and other compounds of low molecular mass involved in 
metabolism [68]. The concept of metabolic profiling was summarized by Jellum et al. as 
follows, “it seems reasonable to assume that if one were able to identify and determine the 
concentration of all compounds inside the human body, including high molecular weight as well 
as low molecular weight substances, one would probably find that almost every known disease 
would result in characteristic changes of the biochemical composition of the cells and the body 
fluids” [71]. Metabolic disorders are often characterized by the accumulation of a small number 
of metabolites in body fluids, generally because a deficiency in enzymatic activity blocks the 
normal biochemical pathway [72]. 

In the 1970’s, studies of volatile metabolites in human urine by Zlatkis and Liebich [73, 74], 
composed of nearly 200 samples from adults were analyzed by GC-MS and resulted in the 
identification of the 40 constituents listed in Table 1. The identities of these volatiles were 
subsequently confirmed by comparing both the retention times and mass spectra of the 
compounds with known standards. Key components found in the profiles of normal urines are 
ketones (i.e. 2-butanone, 2-pentanone, and 4-heptanone), dimethyl disulfide, several alkyl furans, 
pyrrol, and carvone. Pyrazines are present in trace quantities. During a subsequent study 
performed in 1973 and 1980, mouse urine was shown to contain well over 100 volatile 
components [75] similar to those in humans, and an additional study in 1989 [76] identified the 
compounds listed in Table 2 in an examination of dominant and subordinate male mouse urine. 
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Table 1: Volatile Constituents in Human Urine 
(Adapted from [77]) 

3-Methyl-2-butanone 3-Methylcyclopentanone (tent) 

2,4-Dimethylfuran 2-n-Pentylfuran 

2-Methyl-3-pentanone Cyclohexanone 

4-Methyl-2-pentanone 5 Allyl isothiocyanate 

2‐Methyl‐5‐ethylfuran (tent)  Acetic acid 

3‐Hexanone  Benzaldehyde 

2‐Hexanone  γ ‐ Valerolactone 

5‐Methyl‐3‐hexanone (tent) γ ‐ Hexalactone 

4‐Methylpent‐3‐en‐2‐one (tent‐) δ ‐ HexaIactone 

Cyclopentanone  4‐Methyl‐5‐hydroxyhexanoic acid 

3‐Heptanone  ρ ‐ Cresol B 

2‐Methyltetra hyd rofu ran‐3‐one (tent)  Lactone(tent) 

4 4‐Heptanone  9 Dimethyl sulfone 

3‐ Penten‐2‐one  Carvone 

2‐Methyl‐1‐propanol  α ‐Terpineol 

3 2,3,5‐Trimethylfuran  2,3‐Butanediol 

Dimethyl disulfide  6 Pyrrole 

1‐ Propanol  2‐Octanone 

3-Methyl-2-pentanone 3-Octanone 

2 2-Pentanone 4-Ethoxy-2-pentanone 

2,3(?)-Dimethylfuran Limonene 

Diethyl ether (solvent) 2-Heptanone 
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Table 2: Volatile Compounds in Urine of ICR/ALB Male Mice 
(Adapted From [76]). 

Dihydrofurans  mol wt 126 

mol wt 126 

5‐Heptene‐2‐one 

3‐Heptene‐2‐one 

6‐Methyl‐5‐hepten‐3‐one 

Acetates  n‐Pentyl acetate 

Dehydro‐exo‐brevicomin 

Sesquiterpenes β‐Famesene 

α‐Farnesene 

2‐(sec‐butyl)‐4 ,5‐dihydrothiazole 

2‐Penten‐l‐yl acetate 

Acetophenone 

6‐Methyl‐6‐hepten‐3‐one 

4‐Heptene‐2‐one 

Ketones  2‐Heptanone 

mol wt 126 

Class of compounds  Structure 
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2.7 Approaches to Volatile Sampling 

Volatile sampling may be performed using a variety of approaches, each of which come with  
their own advantages and disadvantages in such areas as analyte sensitivity and selectivity of 
volatiles sampled, form factor (sampler/sensor footprint), and time/cost of analysis. Additional 
consideration must be given to any volatile study to determine the best approach with the 
principal concerns being: experimental scale/number of samples, are the compound(s)/subspecies 
of interest known, and is absolute quantitation required. To understand the implications of the 
above in the real-world applications described and proposed below, a brief overview of volatile 
sampling techniques is required. 

The majority of air sampling for volatiles performed in both the laboratory setting and 
environmental field monitoring is a variant of a "grab" sample. Grab samples consist of a single, 
finite time slice of the atmosphere captured during the sampling time period and provide the 
concentration of a volatile mixture for only the actual time slice comprising the collection (i.e. a 
still picture versus video). The time slice may be extended through the manipulation of flow  
rates across a sensor or modifying diffusion to a media, but inevitably are limited in that the 
reported concentrations are a time weighted average of the time of collection, which does not 
allow for discrimination of short duration increases or decreases in analyte concentration. Time- 
series collections through the sequential acquisition of grab samples is possible as is the 
continuous, "real-time" monitoring of a volatile sample space through solid state sensors. Both 
of these approaches have limitations, with space, power, and increased analysis requirements 
being principal concerns for the time-series grab samples and limited analytical resolution and 
discrimination being foremost for real-time sensors (i.e. only good for a given analyte or analyte 
sub-set). Below is a brief description of some of the most commonly used volatile sampling 
techniques along with their associated advantages and disadvantages. 

The gold standard for volatile "grab" sampling is the summa canister, a stainless steel electro- 
polished (or "summa" polished) passivated vessel, generally in a spherical or cylindrical format. 
Summa canister are available in a variety of sizes (100ml to 10L), contain a valve and gas tight 
fitting for sample inlet, and are "re-conditioned" (cleaned) and evacuated prior to collection. 
Additional accessories which can be used in conjunction with summa canisters to allow for time- 
weighted, longer duration collections are flow controllers and critical apertures/orifice assemblies, 
and analog gauges. For typical air grab sampling using summa canisters, the summa canister 
valve is opened and the canister is left in a designated area for a period of time to allow the 
surrounding air to fill the canister and achieve a representative sample. The valve is then closed 
and the canister is sent to a laboratory for analysis. Summa canisters are typically analyzed       
via GC/MS according to the Environmental Protection Agency’s (EPA) guidelines for              
air, such as methods TO-14 and TO-15 [78] and are the only way to trap the lightest of the freons 
and inorganic (permanent) gases such as O2, O3, CO2, SO2, NO2, etc. However, compared to 
other grab sampling techniques, summa canisters are more expensive, have a large physical and 
logistical footprint, require manual sampling and additional high-cost equipment to be compatible 
with most GC systems, and are limited in their volatile capture range to compounds  
with 10 carbons or less [79]. Another common approach to volatile grab sampling are gas 
sampling bags such as the Tedlar® bag. Tedlar® bags require either manual (i.e. hand pump) or 
active pumping of air using a portable sampling pump into these relatively less expensive bags 
which can then be returned to the lab for analysis. Analysis is generally performed either by 
injecting the air in the bag directly into a sorptive device to concentrate low levels of VOCs, 
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followed by desorption into the GC/MS, or by aspiration and injection via a gas tight syringe into 
a sealed headspace vial (less sensitive) and analysis by GC/MS. Principal limitations for gas bag 
sampling are limited sample stability and associated difficulties in sample transport/shipment, 
large sampling footprint, and volatile condensation on the bag surface requiring heating 
immediately prior to analysis. 

Another approach to air sampling is the passive collection of volatiles onto a sorbent media. 
Passive sampling is widely used in both the industrial and environmental setting and is 
particularly useful in many applications that are space limited and/or require long term 
monitoring, such as in workplace personnel assessments. The devices used for passive sampling 
are usually based on diffusion through a well-defined diffusion barrier or permeation through a 
membrane. The analyte concentrations obtained using the passive samplers are a time weighted 
average, and are limited to the capture range of the media utilized. One of the most commonly 
utilized passive samplers is the badge type device, which is commercially available from 
numerous manufacturers such as 3M and SKC [80]. These devices do not require any active 
sampling pumps but generally need exposure to the sample air for considerably longer times (4 
hrs or more) for low level detection. Quantitation requires calculation based upon published 
uptake rates for each individual volatile on a given passive sampler and both open source 
literature [81] and recent consultation with National Institute for Occupational Safety and Health 
(NIOSH) have shown that this sampling approach has been proven less reliable and reproducible 
for quantitative studies than actively, pumped samples. 

One of the most commonly used passive media formats is Solid Phase Microextraction (SPME). 
SPME, which has other commercial analogues such as SPE-td (or SBSE aka “Twister”) is a 
licensed, passive sampler available from Supelco (Bellefonte, PA). Most GC sample preparation 
procedures using based on solvent extractions have been time-consuming, labor intensive, multi- 
stage operations. All of these steps, especially concentration via solvent evaporation, introduce 
errors and losses, especially when analyzing volatile compounds. Additionally, waste solvent  
has to be disposed of, adding to the expense of the procedure. Many of these limitations have 
been reduced through the use of Solid Phase Extraction (SPE), but this technique is still time 
consuming and generally requires a concentration step. SPME was invented by Pawlisyzn at the 
University of Waterloo (Ontario, Canada) in 1989 [82, 83], and addresses these limitations by 
integrating sampling, extraction, concentration, and sample introduction into a single step. 
SPME utilizes a short, thin, solid rod of fused silica (typically 2 cm long and 0.11 mm OD) 
coated with an adsorbent polymer. The fiber is the same type of chemically inert fused silica 
used to make capillary GC columns and is stable at high temperatures [84]. The SPME 
extraction consists of two processes: analytes partition between the sample and the fiber coating; 
and the concentrated analytes desorb from the coated fiber to an analytical instrument. SPME 
extraction is a complex multiphase equilibrium process. An extraction can be considered 
complete when the concentration of analytes has reached distribution equilibrium between the 
sample and coating (amount extracted is independent of further increases in time). The higher 
the distribution constant of a compound, the higher the affinity of that compound for the SPME 
fiber coating [85]. In general, the distribution constant for an analyte increases with increasing 
molecular weight and boiling point. The equilibrium conditions can be described as:  n	=		
Kfs	Vf	Vs	CO		where n is the amount extracted by the coating, K  is a fiber coating/sample matrix
Kfs	Vf	+	Vs	

fs
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distribution constant, Vf is the fiber coating volume, Vs is the sample volume, and C0 is the initial 
concentration of a given analyte in the sample [85]. 

There also exists a linear relationship between the amount of the analyte on the fiber extracted 
and its initial concentration Cs,0 in the sample if the extraction time is long enough for 
equilibration, the dynamic range of the method is not exceeded and all other experimental 
conditions (sample composition, temperature, volumes of sample, and headspace) are held 
constant [85]: 

n = const x Cs,0 where n	=		
Kfh Khs	Vf	Vs

Kfh KhsVs	+	KhsVh +	Vs	

The above equation still holds true if the extraction is interrupted after a constant time before the 
equilibrium is attained [86]. In SPME, detection limits depend on the distribution constants and 
polarity of the analytes but are often in the ppt. For example, with a 100 um 
polydimethylsiloxane (PDMS) fiber, nonpolar compounds with high distribution constants have 
lower minimum detection limits than more polar analytes with lower distribution constants. 
Branched aromatic compounds and chlorinated alkenes exhibit the lowest detection limits [87]. 

As the extremely volatile compounds can begin to leave the fiber before the sample is injected, it 
is best to minimize the time between extraction and desorption and to maintain consistent timing 
for each step. Some of the advantages of SPME over other approaches such as summa canisters 
are: it is a passive sampling technique and takes only a few minutes for equilibration; the “clean” 
sampling matrix provides an accurate volatile baseline; lower sample cost and smaller footprint 
versus a summa canister; and will detect material with higher boiling points than benzene, like 
engine or mineral oil hydrocarbons [88]. Significant downsides to SPME are that sufficient 
analyte may not be absorbed by the SPME fiber for quantitation if the total concentration is very 
low, SPME volatile mixture capture is limited low sample capacity and competitive 
displacement, there is no easy way to automate analysis for high volume testing, and sample 
breakthrough/loss becomes a large concern for extended exposures or in a high flow  
environment and limits stability on fiber. Additionally, only one analysis per sampling event is 
possible as the fiber is completely reconditioned after each injection. With other techniques listed 
above (i.e. summa canister and gas bag), the analyst may perform multiple trials / sample 
injections into GC/MS with just one sampling event. For the field sampling pipeline proposed in 
this study, the fibers would require transport at -4°C. Even under these conditions, prior 
experience in our laboratory [89] has demonstrated that it is likely not possible to store the  
SPME fiber for three days or more post sampling and recover highly volatile organic compounds 
such as chloromethane, but the technique does remain viable for less volatile compounds (i.e. 
naphthalene and dichlorobenzenes). It must also be noted that after discussions with scientists 
directly involved with development of SPME in the laboratory of Dr. Janusz Pawliszyn [90], the 
use of sorption tubes, described below, is certain to be more quantitatively accurate than SPME 
due to the competitive binding nature and limited surface area of the SPME fibers. 

Arguably the most versatile and accurate approach to unknown atmospheric mixtures 
characterization are the active sampling techniques. Active sampling requires forced airflow 
through the collection media using either a pump or in-line series/parallel flow. The most 
commonly utlized active media format in environmental monitoring for this purpose is the 
Thermal Desorption (TD) tube. 
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Although TD tubes may be used in the passive role (see below), they are primarily used in 
conjunction with an actively pumped system. These tubes are analogous to thermal desorption 
traps used in GC/MS to concentrate VOCs in a headspace analysis or trap columns used in liquid 
chromatography. TD tubes allow for collection of volatiles by channeled air flow though the 
capture packing material using miniaturized sampling pumps at the testing site. The TD tubes are 
then either thermally desorbed (i.e. via commercial autosamplers) or solvent desorbed for 
analysis. When utilized for passive sampling, as gases will diffuse in (and out of) both ends of 
the tube, all the passive sampling work is generally done with a single sorbent bed in the tube. 
Doing this limits the boiling point range covered, making this method somewhat constrained in 
that the analyte being measured should be previously determined. As diffusion drives this flow, 
breakthrough is not a concern, however, low boiling materials may diffuse back off of the tube 
(i.e., diffusion is a two way process). This is particularly important if the nature of the gas being 
monitored changes and has a lower concentration of the target analyte than the original gas. 
Depending on the duration for which the sample air is pumped, sorption tubes can either be 
considered as grab sampling or time weighted average sampling (i.e. ~5mins can be considered  
as grab sampling vs. 4hrs at low flow rates considered as time weighted average sampling). One 
feature which contributes greatly to the use of TD tubes for unknown or mixtures detection is the 
availability of multi- phase packing materials capable of capturing a wide range of volatiles, such 
as in the tribed tubes recommended for use in EPA method TO-17 ("Air Toxics"), example 
shown in Figure 2. It is due to this versatility and spectrum of commercially available sorbents 
that TD tube use is widely reported for breath sampling for biomarker discovery [91, 92]. 

Figure 2: Multiple Sorbent Beds Present in Tri-Bed Thermal Desorption Tube 
Utilized for EPA Method TO-17 

2.8 Data Analysis 

To fully appreciate the parallels between GC-LC/MS and the other -omics data sets described 
above and the associated requirements for post-acquisition analysis, a basic understanding of the 
raw chromatographic and spectral data obtained is needed. Using the example of an acquisition 
performed by GC/MS, a typical sample consisting of an unknown mixture of interest is 
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introduced into the heated sample injection port (i.e. via SPME) and flushed by an inert carrier 
gas, generally helium, onto the head of the capillary column. The columns used by our  
laboratory are Fused Silica Open Tubular (FSOT) format columns and consist of a fused-silica 
capillary tube whose walls are coated with liquid stationary phase. Without delving too deeply 
into issues surrounding stationary phase selection, thickness, and their relevance to the principals 
of optimized theoretical plate separation, column types are determined based on the physical 
property selected as the best candidate for separation of the individual components of the mixture 
of interest (i.e. polarity or hydrophobicity) as well as the sample capacity required. As the 
complex mixture is pushed through the column and interacts with the bound stationary phase, 
individual components are pulled apart based on the physical property of the column type, and 
under optimal conditions, elute as discrete, Gaussian peaks into the detector (mass spectrometer) 
over a chromatographic time scale, generally measure in minutes, giving the first dimension of 
each sample run. For the two, additional sample dimensions, we must look at the detector 
utilized, the mass spectrometer. According to Silverstein [93], the concept of mass spectrometry 
is relatively simple: a compound is ionized (i.e. via electron impact, or EI, in the case of 
GC/MS), the ions are separated on the basis of their mass/charge (m/z) ratio, our second 
dimension, and the number of ions representing each m/z unit is recorded as a spectrum. The 
intensity of each individual ion can be correlated to relative intensity, and it is this intensity which 
gives us our third dimension. When all three dimensions are viewed either as a heat map or 
surface (Figure 3), the data feature similarities between GC-LC/MS, genomic (i.e. gene-chip),  
and proteomic (i.e. 2D-SDS PAGE gels) become readily apparent. Analysis issues such as  
image alignment, feature registration, data visualization, and differential profiling are all required, 
and lessons learned in the more mature fields, such as genomics, are directly applicable to         
the analysis of metabolomic data. 

Figure 3: Chromatographic and Mass Spectral Data Showing the Three Axes 
of time, m/z, and intensity and example analysis techniques utilized in differential molecular profiling 

studies 
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3.0 RESEARCH QUESTION AND DESIGN 

3.1 Problem Statement 

To illustrate the data gap in both sampling and analyzing real-world needs in molecular profiling, 
following is a widely reported issue identified with the United States Air Force (USAF) aircraft 
where numerous knowledge and capability gaps exist in the molecular characterization of the 
operational environments faced by today’s Airmen. In 2011, the entire F-22 fleet was grounded 
for nearly five months due to a series of incidents where pilots had experienced unexplained 
symptoms such as shortness of breath, disorientation, confusion, and headache, among other 
symptoms. This led to a myriad of formal investigations that have identified aircraft systems 
limitations as well as a need to improve our analytical toolset and understanding of the environ- 
ments encountered in the F-22 and other high performance aircraft and their effects on the 
humans operating them. In the midst of these high profile investigations, ground maintenance 
personnel have also had a series of incidents where they have experienced symptoms such as 
dizziness, headache, and nausea while performing engine ground runs. These incidents have had 
a similar response effort undertaken for them where possible, to include environmental samples 
out of the cockpit air supply, but have found no specific cause from that methodology. 
Unfortunately, the response methodology was tailored to in-flight emergencies and given that 
testing capabilities are more numerous on the ground, this issue has not been explored as much  
as possible. A comprehensive exploration of the associated chemical environments will require 
both the application of existing sampling tools (described above), development of novel analysis 
techniques, and improvements in large scale environmental differential profiling. Additionally, 
extensive evidence exists on the uniqueness and dynamics of molecular, and particularly mass 
spectral, signatures of liquids and gases for use in identification of materials, phenotypic states, 
and environmental conditions. These operational concerns must be addressed through the 
development and application of both novel sampling tools and novel applications of available 
media for the detection and identification of potential contaminants and other performance 
degrading conditions experienced both on the ground and in-flight. The scope and scale of these 
studies will also be limited due to the availability of informatics tools capable of the 1000's of 
generated sample sets. Current LC/MS and GC/MS systems typically consist of a system of 
specialized instrumentation with customized support software. This software is generally 
proprietary, being supplied by the instrument manufacturer, and is primarily designed to   
facilitate user interaction with the analytical hardware. Most manufacturers also market add-on 
commercial software packages for the analysis of the results of LC/MS and GC/MS experiments, 
which provide a limited tool set for a specific type of data analysis (i.e. proteomic or 
metabolomic), generally with a focus on pharmaceutical development needs, and which cannot be 
readily modified or added to by the end-user as various study needs arise. For larger molecular 
profiling and biomarker discovery studies, such as the LC-GC/MS efforts undertaken 
by our laboratory, none of the software solutions reviewed [94-99] offer the ability to compare 
multiple time point and exposure groups, or handle data sets in significant sample numbers. Due 
to the need to implement a wide spectrum of differential algorithms required for individual 
studies as well as the undocumented "black box" nature prevalent in much of the vendor and 
recently available open source tools/algorithms (possibly inducing unknown bias in obtained 
results), creation of a novel, modular informatics tool set allowing processing of the raw, 
chromatographic and spectral data was required. 
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3.2 Hypothesis 

The core hypothesis tested during the course of this work is that an informatics tool can be 
designed that provides spectral registration, spectral and chromatographic alignment, 
visualization, and comparative analysis for data generated from multiple analytical platforms, i.e. 
LC-MS and GC-MS. Comprehensive and reproducible sample collection techniques were 
developed concomitantly with the informatics tool and used in multiple, independent studies for 
the validation and further development of generated software tools and approaches. 

3.3 Technical Objectives 

As stated earlier, the key requirements to any empirically based study are to (1) accurately 
measure and then compare the collected results in determining the result of the hypothesis being 
tested, and (2) collect a sample representative of the entities being studied. For measurement in 
metabolomic studies focused on volatile and small molecule profiling (i.e. 41-1000 m/z), the 
standard method of approach is GC or LC/MS with associated support software. In addition to 
the proprietary instrument driver software supplied by the instrument manufacturer, most GC- 
LC/MS manufacturers also market add-on commercial software packages for the analysis of the 
results of MS experiments, which are meant to fill the gap in data processing and provide a very 
specific type of analysis (i.e. proteomic or metabolomic for drug discovery/metabolism) and 
cannot be modified or added to by the end-user. For larger metabolomic profiling studies, such 
as the efforts completed in support of this work, none of the software solutions available at the 
time this effort was initiated offered the ability to compare multiple sample groups and handle 
data sets in significant sample numbers (i.e. >500 samples). This bottleneck in data handling  
was the impetus for the development of the informatics tools generated. The second requirement 
for the creation of this analytical pipeline was the design and execution of novel capture 
techniques and/or the down-selection of the best commercially available (if experimental criteria 
are met), with a focus on collecting comprehensive samples to meet the need for the complete 
characterization of the samples/environments of interest. In summary, the overall objectives of 
this work were to develop and implement an implement an analytical pipeline to: (1) identify 
differential molecular signatures and biomarkers of materials, phenotypic states, environmental 
conditions, and individual/group differences; (2) enhance existing mass spectral differential 
profiling capability, allowing for optimally targeted unknown compound identification for 
potential subsequent incorporation into sensor platforms; and (3) conduct associated field 
sampling in support of operational needs. We achieved the objectives of this work through 
pursuit of the following three specific aims. 

3.4 Specific Aim One 

To test the hypothesis that the design and utilization of a novel, prototype software tool for 
feature registration, and spectral and chromatographic alignment will facilitate analysis of large 
scale studies for LC/MS based biomarker discovery and small molecule profiling, and allow the 
ability to visualize the data for a global view of an entire experiment, while still maintaining the 
ability to focus on individual metabolites and spectra for subsequent identification. In support of 
this aim, a prototype software tool (described below) was designed in Matlab 2010a (The 
MathWorks Inc., Natick, MA) for LC/MS based spectral registration and alignment. A 
preliminary data set from a biomarker discovery experiment to identify low lever markers of 
organ specific damage was utilized for this proof of concept study. LC/MS-based metabolomic 
analysis was performed using the Waters Acquity® ultra-performance liquid chromatograph 
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coupled to a Waters QToF® hybrid tandem quadrupole/time of flight mass spectrometer 
equipped with a Lockspray electrospray source operating in positive ion mode. The resulting 
spectra were analyzed using this prototype software tool. 

3.5 Specific Aim Two 

To test the hypothesis that the combination of a suite of basic comparative algorithms, logical 
operators, and statistical filters in conjunction with an integrated set of machine learning tools for 
feature down-selection will allow for the efficient analysis of GC/MS based spectral data to 
support volatile biomarker and gas phased-differential molecular profiling studies. In support of 
this aim, modifications and enhancements were completed on the prototype software tool created 
in Aim 1 to allow for the visualization and analysis of GC/MS acquired experimental data in 
support of multiple VOC-based biomarker and molecular profiling research. Initial GC/MS 
based metabolomic analysis were performed using a Thermo Scientific (Waltham, MA) Trace  
GC Ultra® gas chromatograph interfaced to a Thermo Triplus® autosampler configured for 
automated SPME headspace sampling and in-line with a Thermo DSQII® single quadrupole 
mass spectrometer. Further validation of this tool and approach to analytical studies were 
conducted on a variety of volatile profiling studies, to include phenotypic characterizations of a 
urine murine model, as well as other data sets, including environmental studies, to demonstrate 
versatility of the approach. 

3.6 Specific Aim Three 

To test the hypothesis that the creation and execution of a logically designed work flow for large- 
scale analytical studies in differential molecular profiling, essential in both environmental and 
biological screening studies, requires not only an efficient data analysis pipeline, but also the 
design and execution of novel capture techniques focused on collecting comprehensive samples, 
allowing for the complete characterization necessary. Studies which require complete 
characterization of an unknown, whether it is biologically derived, such as human breath, or 
environmental, as in the case of fighter cockpit air, necessitate varied approaches to collection   
for accurate and broad-spectrum capture of all potential molecular species present. In support of 
this aim, a thermal desorption tube based approach to sample collection for in-flight, pilot air 
supply was performed with follow-on analysis being completed utilizing a modified version of 
EPA Method TO-17 for monitoring VOCs via automated, cryogen-free TD using a Markes Intl 
TD100® in line with a Thermo Scientific Trace GC Ultra® and ISQ® single quadrupole mass 
spectrometer. The thermal desorption GC/MS system was calibrated with a standard of target 65 
VOC analytes, including selected aliphatic and aromatic hydrocarbons, ketones, alcohols, esters 
and halogenated organics such as Freons and chlorinated solvents. In addition to the target 
compound analysis, we identified detected compounds and estimated quantities for all major 
non-target chromatographic peaks using mass spectral library search procedures. 

3.7 Experimental Design 

As the goal of this work was to design and implement an end-to-end sample collection to results 
pipeline, to include a prototype software tool, incorporation of multiple, independent studies were 
required for development and validation of generated tools and approaches. The principal 
bottleneck to any study of this type is the data processing and analysis, thus the first aim was to 
address this through the development of a prototype spectral analysis platform. To both answer 
an active research need and aid in the development and illustration of the novel visualization and 
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rapid multi-sample analysis capability of the tool for discovery of metabolomic biomarkers, use  
of data from a dose-response study examining environmental toxicant exposures was performed. 

Table 3:  Foci, Data Types, and Major Experiments Completed in Support of Aims 

Focus  Data Type(s)  Supporting Experiment(s) 

Aim 2  GC/MS data functionality ‐ chromatographic time 

binning and fold change 

GC/MS  Characterization of the binding between volatile ligands and 

murine major urinary proteins 
Volatile characterization of murine urine as it ages 

Volatile characterization of human urine as it ages 

Novel hybrid evolutionary classifier for biomarker 

discovery 

GC/MS  Murine model of urine based volatile makers of infection to select 

agents 

The next goal of this study was to expand both the capabilities of the informatics tools and 
develop a suite of optimized techniques for analysis of volatile based metabolites. Using the 
same approach as for the LC/MS data analysis, a variety of studies focused on volatile biomarker 
discovery were processed with the enhanced informatics tool to: aid in algorithm and interface 
development; provide validation of generated results; and to prove its utility. To demonstrate the 
various processing, algorithmic, and data filtering requirements addressed, a wide range of study 
types were processed. Experiments examined in support of this aim included: a murine model of 
infection to select agents, characterization of human and murine urine as it ages, human markers 
of age and ethnicity in axillary odors, and characterization of the binding between volatile ligands 
and murine MUPs. 

The final goal of this work was to utilize the analysis tools and workflow developed in the first 
two aims in combination with both optimized and novel sampling techniques to create an end-to- 
end discovery pipeline for large-scale small molecule and volatile organic compound biomarker 
and differential profiling studies. An environmental health and safety focused study of the 
cockpit atmosphere was assessed as final proof of concept and demonstrate the universal utility 
of the approach. 

Aim 3  Novel sampling technique for comprehensive 

assessment of volatile contaminants 

GC/MS In‐flight air quality assessment of the combat air fleet using a novel

sampling approach

Data filtering and normalization techniques  GC/MS  Human volatile markers of age and ethnicity in axillary odor profiles 

Aim 1  Foundational software framework to include  LC/MS Small molecule biomarker discovery in F344 model for low level

spectral registration and alignment  organ selective toxin exposure
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4.0 FOUNDATIONAL SOFTWARE FRAMEWORK 

4.1 Overview 

The goal of this work was to design and implement a prototype software tool for the visualization 
and analysis of small molecule metabolite GC-MS and LC-MS data for biomarker discovery.  
The key features of the Metabolite Differentiation and Discovery Lab (MeDDL) 
software platform [100] include support for the manipulation of large data sets, tools to provide a 
multifaceted view of the individual experimental results, and a software architecture amenable to 
modification and addition of new algorithms and software components. The MeDDL tool, 
through its emphasis on visualization, provides unique opportunities by combining the following: 
easy use of both GC-MS and LC-MS data; use of both manufacturer specific data files as well as 
network Common Data Form (netCDF); preprocessing (peak registration and alignment in both 
time and mass); powerful visualization tools; and built in data analysis functionality. 

To illustrate the novel visualization and rapid multi-sample analysis capability of MeDDL for 
discovery of metabolomic biomarkers, data from a portion of a study examining environmental 
toxicant exposure has been selected. Environmental exposures to toxins as well as therapeutic 
interventions often cause nephrotoxicity[101]. An expanded list of metabolites indicating kidney 
damage would be immensely helpful in the monitoring of renal conditions after exposure to 
external toxicants, not only in pharmaceutical drug safety evaluations and clinical studies, but also 
in the occupational and military operational setting. 

As reported previously by our group [102], D-serine is ubiquitous in human plasma and 
composes up to 3% of total plasma serine level in humans, with plasma D-serine elevations 
observed in chronic renal failure, suggesting elimination by the kidney is responsible for control 
of D-serine concentrations. D-serine is reabsorbed in the pars recta region of the rat proximal 
tubule and subsequently metabolized by D-aminoacid oxidase (D-AAO), to produce α–keto acid, 
ammonia, and hydrogen peroxide [103, 104]. Other research has indicated that metabolism of 
D-serine by D-AAO is causative for initiation of toxicity in the kidney, with elevated levels 
generating selective necrosis to the pars recta region of the renal proximal tubules in the rat[105]. 
The choice to use the D-Serine model was made in order to reveal both early and sensitive 
biomarkers for epithelial cell injury in the kidney. 

4.2 Urine Samples and Materials 

Animal use in this study was conducted in accordance with the principles stated in the Guide for 
the Care and Use of Laboratory Animals, National Research Council, 1996, and the Animal 
Welfare Act of 1966, as amended. Male Fischer 344 rats weighing 222–258 g were obtained 
from Charles River Laboratories. Groups of five animals received a single intraperitoneal (IP) 
dose of d-serine at a dose of 5, 20, or 500 mg/kg (or vehicle only - 0.9% saline solution). Food 
(Purina Certified Rat Chow # 5002) and water was available for all animals ad libitum. The 
housing environment was maintained on a 12-hour light-darkness cycle at 25°C, and all animals 
were examined by Vivarium personnel twice daily. Urine samples were collected cold using 
plastic 50 mL conical tubes containing 1.0 mL of 1% sodium azide maintained at 6-10°C using I- 
Cups (Bioanalytical Systems, Inc.; stored at -80°C prior to use) 24 hours prior to dosing and  
daily thereafter, generating five 24 hour intervals (0, 24, 48, 72, and 96 hours post-dosing). The 
urine was then frozen at -20°C and thawed on ice prior to analysis. For the D-serine exposure set 
described, 104 individual samples were processed by aliquoting 1.0 ml of urine into a 2 ml 
centrifuge tube and centrifuged at 13,000 RPM for 5 minutes at 5°C to remove debris. The 
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supernatant was removed using a 1 mL tuberculin syringe and filtered through a 0.2 μm 
Polytetrafluaroethylene (PTFE) syringe filter disc prior to aliquot transfer to two Waters Corp. 
Total Recovery Vials and subsequent duplicate testing. 

4.3 Instrumentation and Methods 

The LC/MS system utilized for sample analysis was a Waters Q-ToF Micro in line with a Waters 
Acquity Ultra Pure Liquid Chromatography (UPLC). The source temperature was set to 130°C, a 
desolvation gas temperature of 320°C and a desolvation gas flow of 600 l/h were employed. 
The capillary voltage was set at 3.2 kV for both positive and negative ion mode analysis. A scan 
time of 0.4 s with an inter-scan delay of 0.1 s was used throughout and data was collected in 
centroid mode. A 1μl aliquot of filtered urine was injected onto a 2.1x100mm, 1.7μm Acquity 
UPLC BEH C18 column (Waters Corporation) held at 40°C. Retained small molecules were 
eluted via a linear gradient of 98% A for 2 min, 2–50% B from 2–11 min, 50–98% B over 12- 
12.49 min, returning to 98% A at 12.5 min and remaining there until completion of the run at 15 
minutes at an eluent flow rate of 0.25 ml/min; where A = 0.1% formic acid and B = 0.1% formic 
acid in acetonitrile. The mass spectrometric data was collected in full scan mode from m/z 80 to 
1000 from 0.8 to 15 minutes. Urine samples were run in duplicate and analyzed using MeDDL 
using spectra from 0.8-12 minutes. For ms/ms data, random urine samples were run using data 
dependent acquisition with multiple voltages applied. Standards were purchased from Sigma- 
Aldrich (St. Louis, MO) and run at 1 mg/ml (1ug injection) under the same LC-MS conditions as 
the samples to validate retention times and ms/ms spectra. Sample analysis for determination of 
differential metabolites was performed using the MeDDL tool which is described below. 

4.4 Algorithms and Implementations 

The overall goal of the MeDDL system is to facilitate the analysis of LC-MS experimental 
results. With this goal in mind, the system is structured to provide a global view of experimental 
results so a user can quickly identify samples exhibiting interesting or unusual patterns of 
behavior while still having the option to probe these samples at ever finer levels of detail. 
MeDDL accomplishes this by allowing the user to search for relationships between subsets of 
subjects at selected times or treatment levels. The user may ask for subsets which exhibit 
specific levels of change in the behavior of the response. The user may restrict the fold-change 
to positive, negative or combined levels of changes. For example, the user can seek all peaks 
that exhibited a 5 fold positive change between the control subjects and treated subjects at 24 or 
48 hours. In addition, MeDDL also allows the user to perform detailed statistical analysis 
including ANOVA (1-way, 2-way and N-way) among the selected subject groups. The user can 
optionally perform multiple pairwise comparison tests among the means of groups to determine 
whether or not all differences- among group means satisfy a user defined level of significance.  
A Bonferroni correction is applied to compensate for the tendency to incorrectly find a single 
pairwise significant difference among multiple comparisons. 

The MeDDL system is composed of two major subsystems: peak analysis and visualization. 
Peak analysis encompasses several subsidiary tasks including peak extraction, peak registration 
and extraction of registered peaks sets. The visualization system takes the information provided 
by the peak analysis subsystem and combines it with information describing the overall 
experiment to allow the user to explore the results from the perspective of the experimental 
parameters. 
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4.5 Peak Analysis Subsystem 

In this section, we present a brief overview of the algorithms that comprise the peak analysis 
subsystem. As shown in Figure 4, these algorithms include peak extraction, peak registration 
and peak matching. Each algorithm is described below. 

The peak extraction algorithm is composed of two phases. The first phase is designed to form 
temporal clusters required for chromatographic time alignment and the second phase partitions 
clusters into individual peaks. A full experiment consists of hundreds of files from different LC- 
MS sample runs, each of which is identified by subject, treatment, time, and optionally 
replication indices. A single LC-MS sample is composed of a set of n measurement points P = [ 
pi | i = 1, 2, 3, … n ] of the form: 

pi = (Mi,Li, Ii) with components of mass (Mi), scan number (Li) and intensity value (Ii). Each scan 
(Li) also has a corresponding retention time (Ti). Extracted peaks are temporal sequences of 
similar mass coordinates across multiple scans. A simple example of the algorithm for forming 
peak clusters is shown in Figure 4A. 

The peak extraction process is initialized by selecting a reference point (Ma, La, Ia) with a large 
intensity which will become the apex of the resultant peak bounded by a narrow mass band. The 
width of the mass band is set by a mass uncertainty parameter (Δm) specified by the user. Within 
this mass-band, points are assembled into cluster sequences in both temporal directions from the 
initial reference point, accepting only one point per scan. A resultant cluster may grow to lengths 
spanning many peaks. 

The next step, partitioning the cluster into individual peaks, is a difficult design problem,   
because it must instantiate a peak definition that separates the significant peaks from the noisy 
and uninteresting ones. Often, partitioning a cluster visually can be difficult, so some ambiguous 
results are unavoidable. In other words, if it is difficult to resolve peaks visually, it is difficult to 
automate. In Figure 4B there are many small, jagged, noisy peaks and three or four prominent 
peaks. The decision to extract 3 or 4 peaks is determined by adjusting a user-accessible control 
parameter. In this example, a closing operator from mathematical morphology [106] has been 
employed to filter out unwanted peaks, including the fourth obvious candidate. The horizontal 
fill-in lines are determined by the size of the structuring element used by the morphological 
operators to probe the cluster’s structure. 
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Figure 4: Schematic Overview of the Peak Analysis Subsystem 
(A) Sample peak cluster extraction. (B) Sample peak cluster partition. (C) Preliminary peak matching for 

registration. (D) Matched Peaks. pi,j = <Mi,j, Ti,j, Ii,j> – apex point of extract peak with mass (Mi,j), register time (Ti,j) 
and intensity (Ii,j). The behavior of each row is summarized by the average mass (Mavg,i), average registered time 

(Tavg,i), average intensity (Imax,i) and a count of the number of peaks detected (Ni) (from Grigsby et.al. 2010). 
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4.6 Peak Registration 

Peak registration uses only mass and retention time coordinates (Ma,Ta) of the peak apices to 
achieve the significant data reduction required to work efficiently across many LC-MS samples. 
Peak registration primarily involves temporal alignment of peaks, although for some instruments 
the alignment of mass measurements is also required. Initially, one of the images is selected as 
the reference image and all others are transformed to match it. As illustrated in Figure 4C, this 
transformation is accomplished by bracketing each peak with a maximum shift window (Δm, Δt) 
and identifying matching pairs of peaks. Ideally, these are one-to-one unique matches, meaning 
each peak has only one unique candidate match. A larger set of candidate matched peaks can be 
defined by relaxing the criteria so that only the peak in either the reference image or alignment 
images has a unique matching peak. The set of matched peaks is then used to compute a 
polynomial transformation that maps retention times of images relative to the reference image. 
The order of the polynomial is determined by the user (Eq. 1). 

Tr	=	polyval(T,	polyCoef)	=	 c2	∙	T2	+	cl	∙	T	+	co	…	 Eq. 1 

Should the need arise to make adjustments to mass coordinates (Eq. 2); the set would be used to 
compute a bivariate alignment polynomial. 

Tr	=	polyval(T,	 M,	 polyCoef)	 Eq. 2a 

Mr	 =	polyval(T,	 M,	 polyCoef)	 Eq. 2b 

4.7 Peak Matching 

The set of matching pairs of peaks is used to initialize a matrix of matched peaks (Figure 4D). 
Each column represents one image and each row contains a set of registered peaks. The peak 
coordinates (Ma, Ta) are averaged over non-empty images in each row (Mavg,Tavg), producing a 
synthetic reference image so that the original reference image is no longer required. A number   
of cycles of the matching algorithm are then used to fill in existing rows and to extend the number 
of rows by seeding the reference image with peaks from the pool of unused peaks. The 
coordinates of the seed peaks are used as initial values for (Mavg,Tavg). Each iteration of the 
matching algorithm produces new alignment polynomials by pairing image peak coordinates with 
the evolving row averages. A peak matches the row average if its coordinates fall within a      
(Δm, Δt) box centered on the row average, where Δt is much smaller than the Δm used for pre- 
alignment matching pairs. The final matching step, which attempts to fill in any empty slots in 
the matching matrix, is accomplished by selecting the raw data point with the maximum intensity 
in the (Δm, Δt) acceptance box as a peak substitute. 

4.8 Visualization System 

The visualization system is based on the Model-View-Controller (MVC) software architecture 
pattern [107]. The model is composed of a series of relational data tables that include the 
registered match peak table (Figure 4D), the experimental descriptor table, cluster-peak data 
tables and raw sample data tables. The user interacts with the model via a graphical interface 
that supports mouse and keyboard input. The communication between the controller and the 
model is implemented using callback mechanisms defined in the Matlab programming language. 
When the user triggers a callback event, the controller notifies the model of the user’s action and 
then possibly alters the state of the model. The view may automatically be invoked by the 
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controller to update some subset of displays as a result of a change in the state of the model or 
the view may query the model to generate a display based on a user request. 

The user interaction with the model is organized into a collection of filters that allow the user 
structured access to the various components of the data model (Figure 5). These filters are 
divided into logical categories: data, statistical, chemical, and experimental. The data filters 
allow access to subsets of data that are restricted by mass, retention time or intensity. The 
statistical filters allow the user to locate statistically significant patterns of behavior across the 
entire set of registered peaks. Chemical filters allow the user to remove certain peaks from the 
analysis based on chemical properties. For example, isotopic peaks or adducts can be auto- 
matically filtered to simplify analysis. Finally, experiment level filters allow the user to select 
items related to the biological experiment such as treatments levels or longitudinal studies for 
analysis. 

Figure 5: Visualization System Overview 
(from Grigsby et.al. 2010) 

The filtered data is visualized through a variety of displays. The displays allow a multifaceted 
view of the data. Figure 6 demonstrates one series of filter-display interactions possible using the 
visualization system. In this example, the main display opens with a view of all registered peaks 
stored in a summary table along with a heat-map. Each point in the heat-map represents the 
location of a registered set of matched peaks. The position of the point in the heat-map denotes 
the peak-set’s average mass and average retention time. These correspond to the values              
of (Mavg, Tavg) shown in Figure 4D. The brightness of the point is determined by the value of the 
most intense peak in the registered set (Imax in Figure 4D). As shown in Figure 6, the user can 
apply a data filter to identify a smaller set of registered peaks for analysis and then alter the view 
to show line plots summarizing the behavior of several registered peaks. The user can select a 
single registered peak, plot the behavior of all samples as a function of the experimental 
parameters (treatment vs time) and select a specific sample for further analysis. Additionally, the 
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user can explore the raw data in a 3D scatter plot with the ability to zoom-in and zoom-out in any 
specified spectral region. 

To illustrate the utility and power of MeDDL in the visualization of large, multi-group 
experiments, we analyzed data from an LC-MS effort for profiling low level kidney biomarkers 
in the F344 rat model. Importation of the raw QToF MS data files and subsequent analysis of  
the aligned and registered peak database by MeDDL identified numerous metabolic changes in 
the urine of the animals after D-Serine treatment compared to control animals. Registration and 
processing of the D-serine exposure data (n=208) utilizing peak inclusion criteria requiring each 
m/z at a given retention time be present in a minimum of 5% of all samples was accomplished in 
122 minutes. A smaller sample set of n=20 was similarly registered and processed in 12 minutes 
to establish scalability, with all analysis performed utilizing a dual core 2.53GHz Central 
Processing Unit (CPU) with 6 GB of Random Access Memory (RAM). This alignment and 
registration encompassed all detectable peaks, with absolute intensity values as low as 30 being 
registered (background level previously established by our group for the QToF Micro). 
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Figure 6:  Example MVC Interaction 
(from Grigsby et.al. 2010) 
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4.9 Results and Discussion 

To verify the accuracy of the registration and analysis algorithms, a spiked study of control F344 
rat urine was performed (Figure 7A) using a purchased metabolite test mixture of five known 
compounds (Waters Corporation Metabolomic Test Mix). An artificial dose response was 
generated as shown below (Table 4) and examination of nortryptyline (m/z 264.1752), the 
highest intensity standard in this set, via Masslynx (Waters Corporation) generated the response 
illustrated in Figure 7B (below). Following processing by MeDDL, nortryptyline was registered 
by the software generating an identical response curve to that manually determined in the vendor 
supplied instrument control software (Figure 7C). Analysis of the spiked data utilizing the 
previously described fold change filter for all masses showing a 5-fold change across time for a 
given dose showed inclusion of nortryptyline (Figure 7D). 

Figure 7:  Dose Response Spectra 
A – Spectra from spiked study of control F344 rat urine showing presence of nortryptyline in spiked urine, TIC of 
spiked urine sample, and TIC of neat test mixture utilized in spike. B – Nortryptyline dose response obtained via 
Masslynx (Waters Corp.). C - Nortryptyline dose response obtained via MeDDL following alignment and 
registration. D – Selection of nortryptyline via MeDDL as showing >5-fold change in time versus treatment (from 
Grigsby et.al. 2010). 
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Table 4:  List of Spiked Standards 

Theophylline  Caffeine  Hippuric 
Acid 

4‐Nitrobenzoic acid  Nortryptyline 

0 Hr  0 pg  0 pg  0 pg  0 pg  0 pg 

24 
Hr 

750 pg  750 pg  750 pg  375 pg  281 pg 

48 
Hr 

3.75 ng  3.75 ng  3.75 ng  1.88 ng  1.41 ng 

72 
Hr 

375 pg  375 pg  375 pg  188 pg  141 pg 

96 
Hr 

750 pg  750 pg  750 pg  375 pg  281 pg 

(Waters Corporation Metabolite Test Mix) in F344 control urine utilized in software validation study generating a 
synthetic dose response (from Grigsby et.al. 2010). 

Accuracy in both the ability of the software to perform correlations as well as in peak registration 
can be demonstrated through correlation of adducts and isotopes in the aligned peak database, 
which also allows for their easy visualization and elimination as candidate biomarkers. 

As described, twenty separate groups (4 doses x 5 time points) totaling 208 samples were 
analyzed. Following alignment and registration of the D-serine exposure data, more than 4000 
isotopic peaks were originally registered and matched prior to automated de-isotoping via 
MeDDL. During this process the isotopes were identified after peak matching was complete. 
The location (Mavg,Tavg) of each synthetic peak was used to initiate a search for mono-isotopic 
peaks. For a given peak, a search was conducted to located mono-isotopic peaks by looking for 
a peaks at location 

(Mavg + 1,Tavg) (Mavg + 2,Tavg) and (Mavg + 3,Tavg). A match was found if a peak was located 
within the region defined by (Mavg + 1 ±Mε,Tavg±Tε) where Mε and Tε is a user specified limit on 
mass and retention time variation between isotopic peaks. Once a potential isotope is identified, 
the intensity of the actual extracted peaks (main peak and isotopic peak) in each image is 
compared to verify that the isotopic peak has a decreasing level of intensity. If all peaks in the 
set and their corresponding isotopic peaks satisfy this requirement, the isotopic peaks are tagged 
and can be hidden / removed by the user. A similar process is used to locate doubly and triply 
charge isotopic peaks and tag them for removal. 

One of the novel aspects of the MeDDL peak alignment process is the use of a two-stage process 
that begins with a rough peak match where only a few isolated peaks are identified between a 
reference image and each unregistered image. These initial peaks are used to compute a 
polynomial transformation between the reference image and the unregistered image producing a 
rough alignment. This is essentially a global process that handles systematic misalignment 
between images. In the peak matching phase, alignments are refined through a process similar to 
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relaxation labeling [108, 109]. After the rough alignment, a synthetic image is created by taking 
each image in turn and using every peak in the image as the center of a peak acceptance region. 
Any peak in any other image captured within the acceptance region is matched to this peak. The 
average mass and retention time (Mavg,Tavg) across the set of peaks is computed as (Mavg,Tavg). 
Initially, the acceptance region is very small so peaks that were not well-aligned by the 
polynomial function will not be matched. The relaxation process slowly opens the size of the 
acceptance region to attempt to draw in one peak from each image. Each time a new peak is 
captured within the acceptance region, the average (Mavg,Tavg) is recalculated. Thus, the 
acceptance region gradually shifts and coalesces to maximize the number of matched peaks 
across all images at the final value of (Mavg,Tavg). This combination of global alignment / local 
refinement allows the matching to respond to both systematic misalignments as well outliers that 
appear as random variations within individual images. Additionally, although MeDDL 
accurately aligned all data generated by our laboratory, the retention time variation observed with 
the Waters Corp. Acquity UPLC was minimal (<0.25 min). As such, alignment was       
achieved through the use of a 2nd order polynomial and our two stage peak alignment process. 
During development, our group evaluated use of higher order functions; however, we deemed it 
unnecessary for our use. This can be easily modified to be a user editable feature through the 
software interface if necessary for other chromatography systems. 

During the analysis of the exposure data, two of the primary tools included in the MeDDL 
platform were utilized by our group, principal component analysis [110] (PCA) and a novel fold 
change filter. The design of the fold change filter analysis is based on a multilevel statistical 
model that views the behavioral response (intensity) of each synthetic peak as a normally 
distributed random with the added assumption that the behavior of peaks within individual 
images is correlated. Based on this underlying statistical model the system is designed to handle 
longitudinal data sets consisting of subjects exposed to multiple levels of treatments. The 
statistical models are designed to allow the user to perform statistical tests for significant 
differences between treatment levels, significant differences between treatment time points, or 
significant differences between any combination of treatment levels or time points. In future 
applications, if other analysis tools become required, MeDDL is easily expandable through its 
use of the MVC software architecture previously described. This software architecture allows a 
programmer to extend the functionality of the system as follows (1) add a new choice to any 
pull-down menu in system menu, (2) install a new callback for the menu item that invokes a user 
defined function, and (3) create a new user function (userFunction.m). The user code added to 
userFunction.m has full access to all Matlab libraries (e.g. image processing, signal processing, 
pattern recognition, statistics, etc.) and full access to the summary data describing the matched 
peaks, the full description of every peak in a matched set and the raw data for every image. This 
allows a programmer / user to add new functionality to the system without altering the existing 
functionality. 

PCA was performed for all groups of study animals and is shown in Figure 8. The PCA plot 
demonstrates clear separation between sample dosage and time groups with the majority of 
metabolomic changes in urine observed at 24, 48 and 72 hours post treatment with 500 mg/kg D‐ 
Serine. The number of peaks that undergo at least a two-fold change is 19 times higher for the 
500 mg/kg dose than the 5 mg/kg dose, with the changes literally disappearing at 96 hours, most 
likely indicating kidney recovery. 



31 
Distribution A. Approved for public release; distribution unlimited. 

88ABW-2015-1753; Cleared 07 April 2015 

Figure 8:  Dose Response PCA 
A - PCA of LC/MS data for all experimental animal groups of the study. Legend is on the right of the figure. B - 
Principal component analysis of LC/MS data for 0, 5, 20 and 500 mg/kg doses at 24 hours only (from Grigsby et.al. 
2010). 
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At 24 hours post-dosing for the 500 mg/kg group, as many as 426 peaks show a greater than two- 
fold change with the peak intensity cut-off set to a minimum of 100. Although the two-fold 
increase was established based on our goals of identifying differential yet detectable metabolite 
biomarker profiles, the fold change filter incorporates detailed statistical analysis including 
ANOVA (1-way, 2-way and N-way) among the selected subject groups. The user can optionally 
perform multiple pairwise comparison tests among the means of groups to determine whether or 
not all differences among group means satisfy a user defined level of significance. A Bonferroni 
correction is applied to compensate for the tendency to incorrectly find a single pairwise 
significant difference among multiple comparisons. Further, five metabolite peaks exceeded 
100-fold change with the same intensity threshold. It is worthy to note that a number of peaks 
exhibit a statistically significant change while their intensities are relatively low, with most of 
these peaks demonstrating negative changes in our analysis. Examples of negative and positive 
changes are shown in Figure 9. We have excluded isotopic peaks in our data analysis; however, 
some percentage of differentiated peaks can be attributed to adduct acquisition by metabolites as 
well as water loss. Thus, the difference of 18 mass units between peaks 1569 and 1598; 952 and 
246; 1642 and 1532; 1697 and 1664; and 3277 and 42 strongly suggest a water loss with each set 
of ions eluting from the column concurrently. 

Figure 9: Examples of Selected Peak Plots of Negative 
(A) and positive (B) changes after 500 mg/kg D-Serine exposure from Grigsby et.al. 2010) 
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Preliminary metabolite identification was performed, with a list of potential metabolites shown  
in Table 5. Purchased metabolite standards were run under the same LC conditions followed by 
MS/MS as selected samples. Matching retention times and MS/MS fragmentation data generally 
indicate the conclusive identification of a metabolite, which has been demonstrated in a candidate 
biomarker identified in this study, 3-indolylacetic acid. The MS/MS spectrum of 3-   
indolylacetic acid along with a spectrum from rat urine samples is shown in Figure 10. This 
figure also demonstrates the ability of the MeDDL to automate spectral normalization. In 
MeDDL, normalization begins by computing the mean (m1, m2, m3,…) and standard deviation 
(s1, s2,s3, …) of the values of all subjects in each treatment group at the first time point. The peak 
intensity value ps(t) for each subject s in group j at time t is then normalized as: (pi(t) - mj) /        
sj. This effectively shifts all the plots so the mean value of the first time point in each treatment 
group is zero (see Figure 10C). 

Table 5:  List of Potential Metabolites 

m/z 
521.2412 

Retention  Time 
9.071536 

Treatment x Time p‐ 
value 

3.31E‐05 

523.2543  10.508634 8.04E‐05 

491.2421  7.5071826 1.44E‐04 

501.2701  9.916751 1.74E‐04 
714.1853  1.6265737 2.22E‐04 

611.3051  10.67593 2.60E‐04 

609.2873  9.332852 5.72E‐04 

567.2799  10.59735 7.30E‐04 

613.3242  11.733243 9.17E‐04 

383.1925  4.111277 0.00169446 
779.352  1.4149536 0.00176583 

290.1256  1.469668 0.00190476 

655.3292  10.74838 0.00203854 

435.159  10.100951 0.00356158 

589.3217  10.138795 0.00407047 

479.2284  10.405753 0.0055822 

701.3726  11.777291 0.00567922 

326.1946  9.491132 0.00787954 

553.2582  4.0478706 0.01769215 

633.3461  10.232473 0.01919617 

212.1025  1.1299926 0.02197477 

330.0621  2.3208911 0.02478929 

533.1005  4.628623 0.04081653 
511.2622  4.253147 0.04097449 

290.1258  1.7111521 0.04116634 

List of potential metabolites (shown as m/z) identified in urine of rats after 500 mg/kg D-Serine exposure at 24 and 
48 hours after the exposure. Fold change filter set at ten-fold and higher (from Grigsby et.al. 2010). 
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Figure 10: Identification of a Selected Metabolite 
Retention times and MS/MS fragmentation of 3-Indolylacetic acid is shown for standards along with 

corresponding ms/ms from D-Serine urine samples in A. Not normalized (B) and normalized (C) plots 
show changes for 3-Indolylacetic acid throughout the course of D-Serine study (from Grigsby et.al. 

2010). 

4.10 Conclusions 

The data clearly demonstrate dramatic changes in the urinary metabolic profile in response to the 
kidney toxicant, D-Serine. A list of potential metabolites corresponding to masses identified in 
urine of rats is presented. D-Serine metabolomic profiling demonstrates that most changes occur 
between 24-72 hours. The most dramatic changes occur at the 24-hour time point after exposure 
to 500 mg/kg D-Serine. The data suggests that near-normal kidney function resumes at 96 hours. 

Although the ability to visualize the experiment at all levels may constitute the authors’ ideal for 
biomarker discovery and differential metabolite analysis, we feel it adds considerably to this 
effort by allowing the user to differentiate metabolite profiles in a large time-dose study while 
maintaining the ability to focus on individual metabolites and spectra for subsequent 
identification. Additionally, although the tool performed quite well for LC/MS dose response 
study analysis, some early limitations were identified in the prototype version of the tool, 
principally the ability analyze data obtained via GC/MS. GC/MS data presents a specific set of 
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challenges, primarily due to differences in the ionization technique utilized. To address these 
challenges as well as implementing several marked improvements to the tool, significant changes 
to the prototype software were completed, as described below. 
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5.0 GC/MS FUNCTIONALITY AND EXPANDED TOOLSET 

5.1 Overview 

As stated in Section 1, a growing body of discoveries in molecular signatures has revealed that 
VOCs, the small molecules associated with an individual's odor and breath, can be monitored to 
reveal the identity and presence of a unique individual, as well their overall physiological status. 
Given specific analysis requirements for differential molecular profiling via gas chromate- 
graphy/mass spectrometry, our group has expanded on the prototype MeDDL tool to allow for 
processing of VOC data [89]. Preliminary analysis via the MeDDL toolset generally identifies a 
moderately large number of differential, registered peaks, which, depending on filtering and 
comparison parameters could be in the range 50-100 peaks separating the conditions of interest. 
This initial, down-selected subset of peaks is typically too large for incorporation into a portable, 
electronic nose based system in addition to including VOCs that are not amenable to classifica- 
tion; consequently, it is also important to identify an optimal subset of these peaks to increase 
classification accuracy and to decrease the cost of the final system. In this chapter, we will 
discuss an approach to how this differential peak subset and their corresponding intensities are 
used as features for classification. 

As the first illustration of our approach to these studies, we present the below urine based VOC 
comparison of the two parental strains of the BXD mouse model [111], C57 and DBA. For this 
comparison, we demonstrate the expanded MeDDL functionality, to include machine learning 
tools via a classifier similar to a K-Nearest Neighbor (KNN). This modified KNN classifier is 
used in conjunction with a genetic algorithm (GA) that simultaneously optimizes the classifier 
and subset of features. The GA utilizes Receiver Operating Characteristic (ROC) curves to 
produce classifiers having maximal area under their ROC curve. Using this approach, 
experimental results shown below on over a dozen recognition problems show many examples of 
classifiers and feature sets that produce perfect ROC curves. 

5.2 Data Filtering 

Following the spectral registration and alignment previously described [100], the data was 
analyzed using several of the principal analytical methodologies included in MeDDL: 
unsupervised clustering via principal component analysis [110]; differential down selection of 
peaks through combination of a set of logical filters; and utilization of machine learning based 
tools for significant VOC “feature” identification. 

MeDDL was originally created for the analysis of LC/MS data. The ionization techniques 
generally employed for LC/MS are termed “soft” and impart low energy to eluting ions, resulting 
in fairly simple mass spectra: often comprised of just the ionized analyte, or “parent” ion. 
Modifications to the original implementation of MeDDL were required to aid in the analysis of 
the more complex mass spectra in GC/MS resulting from the “hard ionization” induced by the 
Electron Impact (EI) fragmentation process in the mass spectrometer’s ion source. A reduc- 
tionist approach for this analysis was required for the efficient determination of changes 
observed between sample groups. To address this issue, we created a supplementary time- 
binning filter allowing the analyst to specify both a time window and lower bound threshold of 
peak intensities. The comparison then proceeds as follows: an averaged, composite image of 
each user-defined comparative group is generated (i.e. the surface obtained from samples 
comprising each comparative group); the most intense peak from all groups is evaluated across 
all aligned images using a 0.1 minute window and 100,000 absolute (total ion count) threshold; 
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once the comparison is completed, this “time slice” based upon the peak apex ± ½ of the 
specified time window is removed from further analysis and the next most intense set of peaks 
are compared. An additional filter applied in the differential analysis of groups in this study 
included a fold change filter limiting results to only those peaks which demonstrated at least 2 
fold or greater change in intensity between strains. It must be noted that although the MeDDL 
tool contains a wide variety of implemented statistical filters for feature down-selection, we 
limited their use to only the 2 filters listed to allow for optimal feature selection by the classifier. 
Once both of these filters were applied to the grouped, global data set, a Boolean "AND" was 
added to the resulting filtered peak sets to identify the logical intersection, an approach similar to 
that used in generation of a Venn diagram. These reduced data sets were then used for further 
classification described below. 

5.3 Classification 

The filtered, numerical data sets, or feature vectors, produced by the preprocessing described in 
the previous section must be used to perform classification on unknown samples for optimal 
results. However, performing classification with these features still presents several problems. 
First, the filtered features include noisy, irrelevant features, despite the preprocessing steps taken 
to identify features that have both intra-class similarity and inter-class dissimilarity. Second, the 
set of filtered features include those that are highly correlated and therefore are redundant. These 
two observations suggest the classification system should produce a classifier, but should also 
down select the incoming feature set to a small set of cooperative features that are amenable to 
classification. 

5.4 Modified KNN Classifier 

The basic KNN is a two-class classifier that is often used in situations where the data distribu- 
tions are generally unknown [112]. KNN training is performed by using all samples of the train- 
ing data as labeled prototypes. Unknown samples are classified by comparing the distance of the 
unknown sample to the k nearest prototypes, where k is a small user-defined integer (e.g., 3). In 
binary classification (i.e., -two class classification), choosing an odd value for k avoids a potential 
tie vote. The method of computing distance with N-dimensional data is commonly done             
in two different ways: Euclidean distance and L1 norm, or Manhattan/Minkowski distance 
formula using p = 2. This work uses Euclidean distance, but the L1 norm appeared to provide 
similar results. The three nearest prototypes then vote on the unknown’s class label. Figure 11 
illustrates this process in two dimensions. In this sample, the training data contains 5 samples, 
which includes 3 positive samples and 2 negative samples. The three closest samples to the 
unknown are S1, S3, and S4, with the majority those samples being positives; consequently, the 
unknown would be labeled as positive. 
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Figure 11: Example Data and Plot of Data 
(from Grigsby et.al. 2012) 

One unique objective of this work was to develop a classifier that has one or more parameters that 
control the classifier’s behavior. For example, it may be important to correctly classify positives, 
with an increased tolerance for false alarms. Conversely, it may be deemed acceptable to       
miss a couple positives, if the increased number of false alarms is kept small. The k parameter in 
the KNN classifier does not provide such a parameter. k simply denotes the number of voters and 
does not provide a way to increase/decrease the sensitivity toward the class boundaries. 
Further, the number of prototypes is typically quite small in biological studies and therefore 
modulating the number of voters would have limited utility. 

For an appropriately configurable classifier, a ROC curve visually illustrates the possible 
tradeoffs between the rates of true positives and false positives. Figures 12a and 12b illustrate a 
typical ROC curve and the perfect ROC curve. Figure 12a depicts the tradeoffs of a hypothetical 
classifier. The figure shows that the classifier has a parameter that can allow it to obtain a 0.75 
true positive rate, while simultaneously having a false alarm rate of 0.25. Should the operational 
situation require 0.9 rate of recognizing true positives, the rate of false alarms would reach a 
predicted level of approximately 0.75. ROC curves are monotonically increasing. The perfect 
classifier would obtain a rate of 1.0 for positives with a false alarm rate of 0.0. This perfect ROC 
curve is shown in Figure 12b. 

Figure 12: ROC Curves 
Figure 2a shows a typical ROC curve. Figure 2b shows the perfect ROC curve (from Grigsby et.al. 2012). 

To provide for an adjustable parameter, the KNN’s decision rule is modified (Figure13). 
Whereas, the basic KNN’s decision rule is to count the votes to the nearest k prototypes, the 

12a  12b
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modified decision rule uses the distance value to influence its decision. This is approach  
assumes that being closer to a prototype indicates that it is more likely to be of that category. The 
definition for the modified KNN decision rule is as follows, where T is the configurable 
parameter and k is an integer > 0. The classification rule takes the ratio between the total 
distances to the closest positive prototypes and the closest negative prototypes. If the unknown 
happens to be a positive, it is expected that posDistance would be small and negDistance would 
be large, producing a small value for ratio. By adjusting T to a small value, the criteria for 
declaring “positive” becomes more stringent, in that the unknown’s distance from the positives 
must be quite small while simultaneously its distance from the negatives must be relatively large. 
Conversely, setting T to a large value allows more samples to be classified as positives. In the 
extreme case, T = infinity, all unknown samples will be classified as positives. 

Figure 13: Modified KNN Pseudocode 
(from Grigsby et.al. 2012) 

5.5 Learning Algorithm for Feature Selection 

After preprocessing, the set of filtered features is sent to the classification system. As mentioned 
above, the potential exists for reducing this set to an even smaller number. Ideally, this reduction 
would produce a less costly system and produce a subset of features that are more effective than 
using the entire set as a whole. The ideal subset would contain features with general properties 
such as: mutual independence, inter-class dissimilarity, and intra-class similarity. Rather than 
applying more filters to achieve this, our approach is to use the modified KNN classifier to   
assess the quality of a feature subset; where good subsets will provide good classification and 
poor subsets will not be very accurate. 

The process of selecting a subset from a large set uses a sequence of 0’s and 1’s to represent the 
subset. Here the bit positions containing a 1 or 0 indicate features to be included or excluded. 
Figure 14 shows a diagram illustrating how one bitstring is used to down-select the features and 
how that down-selection affects the resulting data set that is fed to the KNN learning algorithm. 
In this example, the bitstring happens to have three on-bits located at positions 2, 4, and 5, 
indicating that only features 2, 4, and 5 are used and features 1 and 3 are ignored. The down- 
selected data is then used to form the modified KNN. 
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Figure 14: Reduction of Training Data 
The topmost figure shows the entire set of data. The middle figure shows one bitstring produced by the GA. The 

bottommost figure shows the training data without the excluded features (from Grigsby et.al. 2012). 

A GA is a natural learning algorithm to apply to this problem [113, 114] since it operates on a 
bitstring. The reader is referred to the text by Goldberg [115] for a more complete treatment of 
GAs. For our purposes, it suffices to say that the GA is a method for optimizing a sequence of 
0’s and 1’s. In order to achieve this, the GA requires a method for evaluating the quality of the 
sequence. By assigning a numeric score to a sequence, and many other sequences, the GA 
navigates the search space to find sequences that are better than the ones it is currently is 
examining. 

Leave-One-Out (LOO) cross validation [112, 116] is a common method for estimating the quality 
of a classifier using only training data. LOO iterates over all the training samples, where each 
sample is temporarily removed from the training set. This smaller set is then used to train the 
classifier, which is then applied to the sample that was held out. Ideally, the classifier will 
correctly classify the sample. By repeating this process over all training samples, it is possible to 
assess the generality of the learning technique. If the LOO algorithm shows solid performance 
over a large percentage of the samples, it can be assumed that the learning technique generalizes 
to truly unknown samples. 

On each iteration of the LOO algorithm, the bitstring in question ultimately results in a KNN that 
is used to classify the sample temporarily removed. Instead of classifying the sample, the ratio 
between posDistance and negDistance is recorded. The set of ratios can be used to create a ROC 
curve that predicts the final system’s ROC curve, where the final system refers to the modified 
KNN that is obtained by using all of the training data. The area under the predicted ROC curve is 
used as the bitstring’s evaluation score. Naturally, a score of 1 corresponds to a perfect ROC 
curve, which indicates that the feature set forms an effective KNN classifier. 
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5.6 Materials / Methods for Machine Learning 

Animal use in this study was conducted in accordance with the principles stated in the Guide for 
the Care and Use of Laboratory Animals, National Research Council, 1996, and the Animal 
Welfare Act of 1966, as amended. BXD mice parental strains (DBA and C57) utilized for this 
study were singly housed in metabolic cages which are approximately nine cm in diameter and 
urine and feces were separated and isolated. Individual mouse urine samples were collected using 
1 mL disposable transfer pipettes (Thermo Fisher Scientific) and placed in 2 mL Eppendorf Snap-
Cap Microcentrifuge Safe-Lock tubes. The urine was then stored frozen at -80°C and thawed on 
ice prior to analysis. For the BXD VOC baseline set described, 170 individual samples 
representing the two parental strains (C57 N = 81, DBA N = 89), and six additional test samples 
(C57 N = 3, DBA N = 3) were processed by aliquoting 200 uL of urine into a 10 ml crimp-top 
headspace vial (National Scientific). The vials were immediately crimped with Red PTFE/white 
silicone crimp seals (Fisher). The bench-top GC/MS system utilized for sample analysis was a 
Thermo Fisher Trace GC Ultra gas chromatograph interfaced to a Thermo Triplus autosampler 
configured for automated SPME headspace sampling and in-line with a Thermo DSQII single 
quadrupole mass spectrometer. Collection of organic volatiles from the urine was accomplished 
using a two cm CAR/DVB/PDMS SPME, Supelco supplier, inserted by the Triplus autosampler 
into the head-space of the sample vials. The headspace samples were incubated at 60°C for 15 
minutes, followed by extraction at 60°C for 30 minutes and automated direct injection. Volatiles 
gathered by the SPME fiber were analyzed through desorption of the fiber by heating to elevated 
temperature and separation with a Restek Stabilwax 30m, 0.25mm ID column. Helium was used as 
the carrier gas at a flow-rate of 1.5 ml/min. A narrow bore SPME injector liner (0.75 mm I.D.) 
was used (Thermo). The following conditions were utilized for sample analysis: desorption for 2 
min via a PTV injector held at 230°C; oven temperature program 50°C (4 min); 5°C/min to 230°C; 
hold 30 minutes giving a total run time of 70 minutes. The DSQII MS transfer line was held at 
230°C and the instrument was operated in positive scan mode from 41 to 400 amu. The raw data 
was collected in centroid mode and the resulting chromatograms and mass spectra (raw files) were 
then converted to common data format (CDF) and subsequently analyzed through MeDDL. Due 
to the fact that SPME extraction is a competitive process leading to mutual displacement from the 
adsorption sites between different analytes or analytes and matrix constituents, the results of this 
study as described report data semi-quantitatively based on relative peak heights. 

5.7 Machine Learning Results 

A total of 170 BXD parental urine samples (DBA and C57 “teaching set”) were collected and 
analyzed over a four month period with the six unregistered “unknown”, test samples utilized 
below acquired over 12 months later. Following GC/MS analysis, CDF conversion, and MeDDL 
registration, the samples in the “teaching set” were filtered for a two-fold change and time binned 
(0.1 min window, 100K absolute threshold minimum cutoff). The filter results are shown           
in Table 6, with peakset 1 comprising all registered peaks, peakset 2 comprising time binning, 
peakset 3 comprising fold change, and peakset 4 the resultant intersection of the two applied 
filters. This subset of 52 VOC features, or peaks, were first screen by PCA (Figure 15) to 
demonstrate group separation prior to analysis by the hybrid GA classifier. Principal component 
analysis is a mathematical procedure that uses an orthogonal transformation to convert a set of 
observations of possibly correlated variables into a set of values of linearly uncorrelated variables 
called principal components. This technique is often difficult in usage to identify the individual 
subset of features responsible for group separation, but is quite useful as a screening technique as 
in Figure 15. 
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Table 6:  BXD Parental Strain Peak Registration and Peakset (PkSet) Filter Results 

Subset  Parameter Size 

PkSet 1  All Peaks  2845 

PkSet 2  Time Binning  Delta T: 0.1
1000000 

Min Int:  293 

PkSet 3  Fold Change  2  500 

PkSet 4  PkSet 2 AND PkSet 3  Boolean AND 52 

(from Grigsby et.al. 2012). 
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Figure 15: PCA of C57 and DBA Filtered Intersect (peakset 4) Results 
(from Grigsby et.al. 2012) 

MeDDL offers users the ability to utilize several different types of classification methods and 
separately store the resulting output for classification of additional, unregistered unknowns.  
These methods use a combination of pre-coded Matlab classifiers, Waikato Environment for 
Knowledge Analysis (WEKA) classifiers, and the novel, in-house developed hybrid GA 
classifier, implemented in Java and Matlab, described in this study (Figure 16). The internal data 
classification allows users to teach the classifiers from peak sets generated using the tool. The 
external data classification is currently designed to process both CDF files and Comma   
Separated Value (CSV) files. All classification methods support classifying intensities or ratios 
of intensities though application of appropriate data filters. 
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Figure 16: MeDDL Tool Machine Learning Implementation and GA Settings 
(from Grigsby et.al. 2012). 

In testing the hybrid GA for this study (Figure 17), setting k = 2, minimum features = 4, and 
maximum features = 10 provided both perfect classification of C57 versus DBA for both the 170 
teaching samples as well as the 6 “unknown” external samples. Reverse classification (DBA 
versus C57) using these same settings resulted in 2 mis-classifications of the “unknowns” 
illustrating the need to optimize the GA settings for each classifier result. 

Figure 17: Hybrid GA Results 
Vertical line is user adjustable slider to determine T threshold values (from Grigsby et.al. 2012). 

Results of the hybrid GA classifier were comprised of 10 VOC “features”, which is the 
maximum features size allowed by the GA settings. An example of one of the selected VOCs is 
shown in Figure 18. In an focused biomarker study, each resultant peak would then be 
preliminarily identified through comparison to the National Institute of Standards and 
Technologies (NIST) 08 database and Wiley libraries and verified though expert, manual 
spectral analysis and comparison with purchased standards. 
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5.8 GC/MS Functionality Conclusions 

The MeDDL platform has been markedly improved from the original version, with streamlined 
analysis of multi-group comparisons through the addition of a more intuitive interface, the ability 
to dynamically alter group definitions and group comparative displays, and the creation of 
definable, group comparative graphics. These changes in combination with the addition of 
machine learning approaches greatly enhance the capability of the tool and future applicability to 
studies requiring biomarker discovery for sensor and diagnostics applications. In the following 
chapter, several other examples of the universal utility of the tool in support of various GC/MS 
differential profiling studies will be described. 

7 
x 10 Peak 196 Strain: C57 7 
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Figure 18: Boxplot of Hybrid GA VOC Feature Output Selected by Classifier 
(from Grigsby et.al. 2012) 
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6.0 GC/MS DATA PIPLELINE 

6.1 Overview 

To best demonstrate that the application of the comparative algorithms, logical operators, and 
statistical filters implemented in the developed software tool allow for the efficient analysis of 
GC/MS based VOC profiling studies, a variety of studies were analyzed and presented below. 
Some of these studies in particular presented unique data handling challenges and aided in 
identification of needed enhancements required in future, "real-world" applications described in 
the following chapter. Analysis of these separate datasets also help provide validation of 
implemented algorithms with examples provided. Experimental examples of application of the 
volatile analysis pipeline developed, illustrated in Figure 19, and described below include: 
characterization of both human and murine urine as it ages, human markers of age and ethnicity 
in axillary odors, and characterization of the binding between volatile ligands and murine MUPs. 
GC/MS Experimental Example 1: Differential Binding Affinities Between Volatile Ligands and 
Urinary Proteins Due to Genetic Variation in Mice 

Figure 19: GC/MS Data Pipeline Utilizing the MeDDL Tool 

Metabolite Differential and Discovery Lab (MeDDL) Tool 

A collaborative study was completed using the MeDDL tool with scientists from Monell 
Chemical Senses Center (Philadelphia, PA) to investigate the composition of bound and unbound 
VOCs on the mouse MUPs of various inbred species. This effort was part of an investigation on 
the nature of murine volatile and pheromone based signaling and is described in detail in Kwak, 
et. al., 2012 [117]. In short, a comparison of the binding affinities in pooled male urine samples 
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from three different inbred mouse strains (B6, BALB/b and AKR) was completed by measuring 
the release of volatile ligands before and after denaturation of the MUPs via SPME based 
headspace concentration and GC/MS analysis. The sample set analyzed consisted of pooled 
urine samples collected over a 10-day period, one from each of the individual mice in the 
experiment (N = 8 B6, 7 AKR, and 6 BAL/b mice respectively). Raw spectral data of both intact 
and denatured murine urine was supplied by Monell along with associated meta-data of the study 
group samples. A sampling of the raw spectral data was first reviewed for chromatographic and 
spectral reproducibility across the major urinary peaks, and then for instrumental absolute 
baseline and peak intensities to be used for spectral registration and alignment. All data was then 
converted to netCDF format and aligned/registered via the MeDDL tool, resulting in a total of 
1895 peaks. 

Following registration and alignment, the GC/MS data were analyzed by PCA and the fold 
change filter as described in section 4. Screening for group separation via PCA, shown in  
Figures 20a-b demonstrate clear separation between each of the six different groups as well as 
between intact and denatured groups, indicating that both strain difference and protein 
denaturation are important contributors to the unique volatile profiles. To identify those peaks 
responsible for the separation observed via the PCA, we used a combination time-binning (due to 
EI fragmentation), tests for fold-change and statistical significance, and absolute intensity using 
the below parameter values. We restricted the fold-change to only those time windows which 
demonstrated two fold increased levels of change upon protein denaturation (positive change) 
within a specified time slice of 0.1 minutes and an intensity threshold of 300,000 absolute 
intensity (total ion count). A test for significance between all comparisons was also completed 
using N-way ANOVA (P≤0.1), which included Bonferroni correction to compensate for the 
tendency to incorrectly find a single pairwise significant difference among multiple comparisons. 
Results obtained from the three strain specific pair-wise comparisons of intact to denatured 
samples displayed the increased release in 49 peaks induced by protein denaturation in AKR, 26 
in B6, and 36 in BALB/b, respectively. Figure 21 illustrates the changes in the release of ligands 
upon denaturation. GC/MS Experimental Example 2: Changes in Volatile Compounds of Mouse 
Urine as it Ages: Their Interactions with Water and Urinary Proteins 
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Figure 20: PCA of GC/MS Data 
The six different groups (a) and for the intact and denatured groups (b) from Kwak et.al., 2012. 
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Figure 21: Changes in the Release of Ligands upon Protein Denaturation 
Changes in the release of ligands upon protein denaturation in the urine samples derived from different mouse 

strains. The y axis indicates the absolute intensity of the base peak ion in each ligand. I: intact urine; D: denatured 
urine. The degree of release in each ligand was distinctive in each strain. 
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A collaborative study was completed using the MeDDL tool with scientists from Monell 
Chemical Senses Center (Philadelphia, PA) to investigate changes in the volatile composition of 
mouse urine as it ages. This effort was part of an investigation on the nature of murine volatile 
and pheromone based signaling and is described in detail in Kwak, et. al., 2013 [118]. In short, 
the amount of water in an aqueous sample influences releases of VOCs from the sample. As the 
sample dries, evaporations of water-soluble VOCs accelerate, whereas the loss of water may 
render some VOCs to bind to solid surfaces, preventing them from being released into the air. A 
number of studies measured the loss of VOCs as male mouse urine aged. Some VOCs were 
removed rapidly, whereas others were released slowly. However, the previous studies did not 
clearly demonstrate whether the gradual releases of the VOCs were due to their binding to MUPs 
and/or due to the loss of water as urine became dried. In addition to the roles of water in the 
release of VOCs mentioned above, the loss of water in urine may alter the structure of MUPs, 
losing their ability to retain volatile ligands. Here, we investigated the effect of water loss on the 
releases of VOCs while mouse urine dried, and determined whether the ligand-binding ability of 
MUPs in the dried urine remains active. Using similar sample collection and GC/MS 
methodologies utilized in Kwak, et. al. 2012, a data set comprised of 24 chromatograms were 
generated from a pooled collection of 4 - B6 male mice and 3 - B6 female mice acquired over 
several days by analysis of 12 aliquots of each sex pool. These 24 aliquots (12 for male and 12 
for female) were separated into 6 condition groups, giving an N=3 per treatment. Treatment 
groups consisted of "intact", "aged", "aged + water", and "aged + water + GdmCl" with each 
treatment described in detail in Kwak, et. al., 2013. 
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Figure 22: PCA of Treatment Groups 
PCA of the treatment groups from showing clear feature separation 

Raw spectral data was supplied by Monell along with associated metadata of the study group 
samples. A sampling of the raw spectral data was first reviewed for chromatographic and 
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spectral reproducibility across the major urinary peaks, and then for instrumental absolute 
baseline and peak intensities to be used for spectral registration and alignment. All data was then 
converted to netCDF and aligned/registered via the MeDDL tool, resulting in a total of 1166 
peaks. Following registration and alignment, the GC/MS data were analyzed by PCA and the  
fold change filter as described in Section 4.0.  Screening for group separation via PCA, shown in 
Figures 22, shows clear separation between each of the treatment groups, indicating that sex, 
MUP denaturation, and hydration state are important contributors to the unique volatile profiles. 
To identify those peaks responsible for the separation observed via the PCA, we used a 
combination time-binning (t = 0.1 min) inclusive of only those peaks >200 K absolute intensity 
and tests for fold-change (≥ 2). Once each of these filters was applied to the grouped, global data 
set, a Boolean “AND” was added to the resulting filtered peak sets to identify their logical 
intersection. fold-change (≥ 2). Once each of these filters was applied to the grouped, global data 
set, a Boolean “AND” was added to the resulting filtered peak sets to identify their logical 
intersection, resulting in 142 compounds for further investigation (see Figure 23a-b), which is 
described elsewhere (see Kwak et.al. 2013). 

GC/MS Experimental Example 3: Changes in Volatile Compounds of Human Urine as it Ages: 
Their Interaction with Water 

A collaborative study was completed using the MeDDL tool with scientists from Monell 
Chemical Senses Center (Philadelphia, PA) to investigate changes in the volatile composition of 
human urine as it ages. The urinary odors emitted from toilet facilities and from individuals 
suffering from either incontinence or metabolic disorders are perceived as unpleasant. As 
anecdotal reports suggest that the odor of aged urine is different from that of fresh urine, using 
techniques described above for murine urine this study sought to identify the specific, differential 
VOCs released from aged human urine. As described in Kwak et.al. 2013 [119], the urine 
samples analyzed consisted of a pooled sample collected from 6 adults (3males and 3 females). 
From this pooled sample, six 1 mL aliquots were prepared, with each aliquot placed in a 60 mL 
glass jar and capped. 

Three of the prepared aliquots were analyzed immediately via SPME based headspace 
concentration and GC/MS analysis and served as the "Intact" study group. The remaining three 
aliquots were left uncapped in a ventilated chemistry hood for 24 hours until nearly dried and 
served as the "Aged" study group. Raw spectral data was supplied by Monell along with 
associated metadata of the study group samples. As described above, a sampling of the raw 
spectral data was first reviewed for chromatographic and spectral reproducibility across the 
major urinary peaks, and then for instrumental absolute baseline and peak intensities to be used 
for spectral registration and alignment. All data was then converted to netCDF and 
aligned/registered via the MeDDL tool, resulting in a total of 384 peaks. To identify the 
differential VOCs, the following filter settings were used: the fold change filter was limited to 
those peaks with two-fold or greater change in intensity and the time binning filter parameter 
was set using 0.1 min bins and inclusive of only those peaks >10K absolute intensity. 
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Figure 23: The Number of Binned Peaks which Displayed Two-Fold or Greater Change 
absolute intensity changes in each pairwise comparison (from Kwak et.al., 2013) 

Once each of these filters was applied to the grouped, global data set, a Boolean “AND” was 
added to the resulting filtered peak sets to identify their logical intersection. Results of the time 
binning filter generated 103 discrete peaks and combination with the fold filter (Intact vs Aged) 
resulted in 58 differential VOCs. The 58 peaks were identified and a list of the identified VOCs 
is provided in Table 7 (from Kwak et.al. 2013). 

(a) Male 

(b) Female 
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Table 7: A List of the Volatile Compounds whose Levels Changed after the Urine Samples 
were Aged [119]. 

Retention time (min)  Base ion  Compound ID  Fold change (Intact ‐> 
Aged) 

1.32  42  trimethylamine*  5.05 

2.15  43  acetone  29.66 

2.90  43  2‐butanone  17.43 

3.22  45  ethanol  11.71 

4.06  43  2‐pentanone  51.83 

4.42  43  2‐methyl‐3‐pentanone  13.17 

4.62  58  2‐hexanone  8.19 

5.59  43  3‐hexanone  11.04 

6.15  57  3‐heptanone  32.95 

6.50  43  3‐ethyl‐2‐pentanone  4.12 

6.88  43  3‐methyl‐2‐hexanone  3.74 

7.39  43  4‐heptanone  145.33 

8.86  43  2‐heptanone  12.88 

9.36  43  3‐methyl‐2‐heptanone  12.81 

9.57  57  6‐methyl‐3‐heptanone  11.69 

9.82  69  3‐methylcyclopentanone  14.45 

9.92  71  2‐methyl‐4‐heptanone  5.42 

12.40  43  4‐nonanone  2.42 

12.76  83  3‐ethylcyclopentanone  22.58 

13.02  72  3,5‐dimethyl‐2‐octanone  21.16 

13.92  58  2‐nonanone  11.55 

15.68  43  4‐hydroxy‐2‐pentanone*  2.17 
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15.83  112  p‐menthan‐3‐one  80.09 

16.06  60  acetic acid*  7.01 

18.44  45  propylene glycol*  14.58 

20.45  74  2‐methylbutyric acid*  11.19 

20.50  60  3‐methylbutyric acid*  3.26 

20.97  145  3,6‐dimethylbenzofuran  15.88 

21.39  110  p‐menth‐1‐en‐3‐one  32.04 

21.48  107  a terpene  31.94 

21.80  59  acetamide*  2.61 

22.77  42  caprolactone*  4.41 

24.58  79  dimethyl sulfone*  11.96 

26.78  71  pentolactone*  7.34 

27.47  107  p‐cresol  6.59 

(* indicates the compounds whose absolute intensities increased after the samples were aged.) 

GC/MS Experimental Example 4: Human Volatile Markers of Age and Ethnicity in Axillary 
Odor profiles 

A collaborative study was completed using the MeDDL tool with scientists from Monell 
Chemical Senses Center (Philadelphia, PA) to investigate human volatile markers of age and 
ethnicity in axillary odor profiles. Volatile organic compound biomarker discovery in humans is 
especially challenging due to significant variances in diet, environmental conditions/exposures, 
and genetics. Thus, creation and validation of outlier filtering and normalization approaches for 
spectral data is required for the differential analysis of many studies involving human subjects, 
with four approaches evaluated for this study: Total Ion Current (TIC) based normalization; 
"Olympic average" based normalization; outlier filtering; and "Group Distribution" based 
filtering. Please note that these are just a few of the filter types available in MeDDL, with a 
more complete listing available in Appendix A. In short, TIC normalization involves summing 
the intensities of all peaks contained in each file of the spectra and setting that sum as equal 
across all files. This approach, however, can be skewed by the presence of high intensity 
outliers, thus "Olympic average" based normalization was implemented. In "Olympic average" 
based normalization, user defined upper and lower percentiles are calculated across all of the 
files using user defined values. This will generate in two vectors containing percentiles, each 
with a size of n by 1, where n is the number of features. These percentile vectors are used to 
normalize the intensity values for all ions across each file. The difference of the original 
intensities in a file and the lower percentile value is divided by the difference of the upper and 
lower percentiles. This technique will scale down the intensities by several orders of magnitude, 
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but should be less susceptible to the presence of low/high intensity outliers. Next, the outlier 
filter, using an operator defined threshold, removes those peaks that are outside of the range of 
the n number of standard deviations from the mean. The user specifies the number of standard 
deviations to accept and data outside of this range will not be shown throughout MeDDL (i.e. 
this is a display filter, not a data exclusion filter). It should be noted that as this filter replaces 
excluded data points from the display with Not a Number’s (NaNs), some comparisons and 
plots, such as PCA, cannot be generated using the modified data set. The final filtering  
technique evaluated, and the one utilized for study, is a similar mean distribution filter to the 
"outlier" display filter labeled "group distribution" as currently implemented in MeDDL. In this 
filter, the means and standard deviations are calculated across all files for each peak. Each value 
is checked to ensure that it is within the user-defined number of standard deviations from the 
mean, and if the peak is more standard deviations away then the given threshold, the peak is 
excluded from the final peak set. 

In brief, for sample generation by Monell scientists, body odors were collected from 40 female 
subjects consisting of N=10 of four ethnic and age group (Young Caucasian, Young Asian, Older 
Caucasian, and Older Asian) under a protocol approved by the University of Pennsylvania 
Institutional Review Board. Subgroups of these extracts were combined to form super-donors to 
eliminate sensory panelists focusing on individual donors. Prior to skin extraction, subjects were 
screened via collected SPME samples prior to formation of super-donors to insure that no donor 
was an outlier (e.g., unusual VOCs such as bromoform from swimming pool water). The raw 
GC/MS data from these collected samples was supplied by Monell along with associated 
metadata of the study group samples. As described above, a sampling of the raw spectral data 
was first reviewed for chromatographic and spectral reproducibility across the major peaks, and 
then for instrumental absolute baseline and peak intensities to be used for spectral registration and 
alignment. All data was then converted to netCDF and aligned/registered via the MeDDL        
tool to look at inter-age and inter-ethnicity variation in skin VOCs. 

A total of 2960 peaks were registered. To identify the differential VOCs, the following filter 
settings were used: the fold change filter was limited to those peaks with two-fold or greater 
change in intensity and the time binning filter parameter was set using 0.1 min bins and inclusive 
of only those peaks >100K absolute intensity. A minimum threshold hold filter was also applied 
to include only those peaks exceeding an absolute intensity threshold as low level, trace 
compounds were not considered relevant to the funding sponsor (deodorant manufacturer). Next, 
the group distribution filter, described above, as applied and excluded all peaks > 3 standard 
deviations from the group mean. Once each of these filters was applied to the grouped, global 
data set, a Boolean “AND” was added to the resulting filtered peak sets to identify their logical 
intersection. Results of the each of the respective filters are shown below, and the resulting 
intersection indentified 55 differential VOCs. 

PkSet 1 - All Peaks - Size: 2960 
PkSet 2 - P-Value <= 0.1 - N-way - Size: 2063 
PkSet 3 - Time binning - Delta T: 0.1 Min. Int.: 100000 - Size: 419 
PkSet 4 - Fold Change of 2 - Size: 2123 
PkSet 5 - Group Intensity Filter of 300000 - Size: 785 
PkSet 6 - Group Distribution Filter of 3 - Size: 332 
PkSet 7 - Pkset 2 AND PkSet 3 AND PkSet 4 AND PkSet 5 AND PkSet 6 - Size: 55 
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Figure 24: Outlier Filter Example 
The figure on the top was generated using the original data and the figure on the bottom was generated after the 

outliers were removed. A setting of 1 standard deviation was used in this case. Notice the difference in scale 
between the two images 
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Results of principal component analysis and unsupervised hierarchical clustering of this filtered 
data set are shown in Figure 25 and demonstrated definitive separation between Asian and 
Caucasian older age group females. 
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Figure 25: Filtered Data from Age and Ethnicity-Based Skin VOC Differences 

6.2 Conclusions 

Given the unique requirements for the various GC/MS based biomarker studies described above, 
comparative analysis, via MeDDL has facilitated efficient of each and successfully demonstrated 
not only application and utility of the expanded GC/MS functionality but also the versatility of 
the approach. This described methodology is representative of our analytical pipeline and is 
applicable to a wide range of VOC and small molecule based differential profiling and biomarker 
discovery applications such as human performance monitoring, odor based biometrics, medical 
diagnostics, targeted materials detection, and environmental health and safety investigations, 
some of which will be addressed in the following section. 
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7.0 COMPREHENSIVE SAMPLING PIPELINE 

7.1 Overview 

As addressed earlier, studies which require complete characterization of an unknown, whether it 
is biologically derived, such as human breath, or environmental, as in the case of fighter cockpit 
air, necessitate varied approaches to collection for accurate and broad-spectrum capture of all 
potential molecular species present. To address study requirements for work performed by our 
laboratory and to complete the end-to-end analytical pipeline which was the focus of this 
research, several "real-world" sample collection methods were developed and implemented for 
human breath capture as well as characterization of the in-flight, pilot air supply in operational 
combat aircraft, one of which is presented below. As covered in chapter 1, a variety of methods 
are available for volatile sampling. To be able to both quantitate obtained samples and to 
increase the likelihood of isolating potential environmental contaminants, thermal desorption 
tube based approaches were selected with follow-on analysis being completed utilizing a 
modified version of EPA Method TO-17 for monitoring VOCs [120], described below. 

7.2 In-Flight Air Quality Sampling 

Our laboratory supported investigation of reported issues surrounding the On-Board Oxygen 
Generating System (OBOGS) utilized on the F22 and other USAF fleet aircraft. As part of this 
effort, a technical solution was developed by our group to sample and analyze both the cockpit 
ambient air and OBOGS product air. This involved placing TD tubes in line with the summa 
canisters already planned for placement into the OBOGS product line and into the cockpit air. 
This solution allowed for a much more complete picture of the chemical make-up of 
contaminants in the oxygen supply and cockpit air. The TD tubes provided the ability to capture 
and analyze heavier molecular weight chemicals (semi-volatiles) that the summas cannot be 
analyzed for. The summas were still necessary to test for very light organics such as freons and 
inorganics such as oxygen (O2), carbon monoxide (CO), and carbon dioxide (CO2). The 
summas, when timed with a critical aperture, also provided the airflow through the TD tube so 
that a known volume was collected for concentration quantification while avoiding the need for 
additional connections and equipment to pull air through the tubes (see Figure 26). Empirical 
validation of this sampling strategy showed that a 1 hour collection using the summa canister as 
a passive pump in line with the TD tube resulted in a 400ml total volume collection for both. 
This value was used to establish corresponding calibration curves for quantitation of detected 
compounds. 
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Figure 26: Air Sampling Strategy for In-Flight Collection 
Top figure describes airflow through the TD tube and summa canister. Bottom figure shows engineered solution for 

collection of both cockpit ambient air and OBOGS product supply to pilot. 

As stated above, all TD tubes were analyzed using a modified version of EPA method TO-17 for 
the determination of toxic organic compounds in ambient air using active sampling. GC/MS 
analysis conditions are listed as follows. TD100 TD auto-sampler parameters: cold trap low 
temp.: 15°C; Tube desorption temp.: 310°C; tube desorption time: 10 min; trap purge time: 1.0 
min; cold trap high temp: 315°C for 5 min; split ratio: split-less; trap heating rate: 40°C/s  
(MAX); TD flow path: 160°C. Thermo GC Ultra parameters: carrier gas: He; DB-624 column: 
60 m x 0.32 mm x 1.80 μm; constant pressure mode: 10 psi; temp. program: 40°C (1 min), 
10°C/min to 240°C (20 min). Thermo ISQ conditions: MS source temperature: 275°C; transfer 
line temperature: 230°C; full survey scan mode mass range: 35 to 550 amu. 
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Daily quality assessment/control procedures involved running a blank with internal standard and 
passing tune criteria for bromofluorobenzene (BFB). The internal standard is a 4 component mix 
composed of two internal standards (1,4 difluorobenzene and chlorobenzene-d5), a surrogate 
(bromochloromethane), and a tuning compound (bromofluorobenzene). Additionally, prior to 
processing samples, a laboratory Control Sample (LCS) and Calibration Check Verification 
(CCV) were completed at the mid-point of the calibration curve. The mid-point calibration curve 
was 25ppbv. The LCS criterion is ± 30% of 25ppbv (17.5 – 32.5 ppbv). 

A two-pronged approach was used for data analysis. First, a commercial Thermo Scientific 
software product, Tracefinder Environmental, Food, and Safety (EFS) version 2.1 was used to 
store calibration results and generate quantitative/qualitative reports of TO-17 chemicals detected 
on the sorbent tubes. This is performed by either matching sample peaks against a user   
generated library and calibration curves using a combination of retention time, quantitative ion, 
and confirming ions, or as an unknown/tentatively identified compound via automated NIST11 
search. The limit of detection (LOD) established for most of the TO-17 compounds was 
established by our laboratory at 2ppbv. All reports generated by Tracefinder were exported and 
summarized into Excel spreadsheets for data consolidation using an in-house Visual Basic 
software macro. 

The second approach to data analysis was completed through use of the MeDDL tool (described 
above). Following registration and alignment, the defined experimental result groups were 
processed through a logical combination of the three following data filters: fold change limiting 
results to only those peaks which demonstrated at least 2 fold or greater change in intensity; N- 
Way ANOVA with only those peaks having p < 0.1 significance between groups; and the time 
binning filter using 0.1 minute bins inclusive of only those peaks > 200K absolute intensity. 
Once each of these filters was applied to the grouped, global data set, a Boolean "AND" was 
added to the resulting filtered peak sets to identify their logical intersection. These reduced data 
sets were then used for further manual, statistical, and machine learning comparisons and 
subsequent compound identification. 

A total of 116 sorties were flown using this sampling strategy with 65 sorties completed at 
Langley/Hunter Air Force Base (AFB) and 51 sorties at Joint Base Elmendorf Richardson 
(JBER). Note that the majority of the 65 sorties were flown from Langley AFB. Each sortie 
generated a set of summa canister and thermal desorption tube data for both cockpit and OBOGS 
air samples (Figure 26). Summa canister samples were analyzed using EPA TO-15 method by 
Columbia Analytical (ALS-Columbia) located in Simi Valley, CA. Although specific data is not 
available for public release, these investigations identified trace amounts of chemicals in the 
system, none of which were above known hazardous concentrations, and were what was  
expected based on laboratory testing of the system’s ability to remove contamination. (Figure 27) 
Follow on studies are planned to determine if the chemicals and concentrations measured are 
typical among different fighter airframes vs. those collected and will provide a further 
understanding of fighter aircraft air quality baseline. 
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Figure 27: Example of In Flight Data Analyzed using the MeDDL Tool 
Samples consisted of 414 charcoal filters analyzed by thermal desorption (modified EPA TO-17). 

Same Sample Subset 
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8.0 CONCLUSIONS AND FUTURE DIRECTION 

8.1 Informatics Pipeline 

Through a combination of the base MeDDL registration and alignment algorithms and the 
described additional functionality, MeDDL now offers the analytical chemist the potential for 
visualizing data in new ways, providing novel insight into the experimental results, and 
expediting LC/MS and GC/MS based biomarker discovery. Modifications to the current 
implementation of the tool are on-going, with automated iteration across available “unknowns” 
for optimization of the hybrid GA parameter settings planned. The overall framework was 
rapidly prototyped using MathWork's Matlab software language and is being translated to the 
general purpose, platform independent language, Python, to support wide dissemination of the 
tool. The MeDDL tool dramatically reduced manpower costs in our research by providing 
scaffolding for the rapid development and verification of new algorithms without the need to 
create a large amount of supporting software. MeDDL also offered the potential for staff 
scientists to visualize data in new ways, providing novel insight into the experimental results and 
facilitating metabolomic biomarker discovery. It should be noted that a number of tools have 
recently been proposed in the literature which show great advancements in metabolomic and LC- 
MS analysis capability [95-99, 121]. However, the MeDDL tool, through its emphasis on 

Figure 28: Two-Phase System for Compound Identification and Risk Analysis 

visualization, provides unique opportunities by combining the following: easy use of both GC- 
MS and LC-MS data; use of both manufacturer specific data files as well as netCDF; 
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preprocessing (peak registration and alignment in both time and mass); powerful visualization 
tools; and built in data analysis functionality. 

A new effort to build on the success of the MeDDL tool has been initiated by our laboratory. 
Portable GC/MS systems are currently deployed by the DoD in a variety of situations where the 
identification of the presence of various VOCs is required for protection of forces. These 
systems rely on limited, build in VOC libraries and NIST reference spectra for identification of 
individual component compounds and are typically operated by personnel with minimal technical 
background. Often times, materials of interest/concern are actually composed of 
complex mixtures, whose relative component ratios are the determining factor required for 
identification. This research aims to enhance the capability of the fielded, portable GC/MS 
systems by providing rapid, on-site volatile signature recognition. The prototype software  
system is envisioned as being composed of two cooperative sub-systems (Figure 28). The offline 
learning subsystem will be used in a laboratory setting to assemble an extensible library of 
labeled sensor features representing known volatile organic compounds. The labeled library of 
VOC’s will seed the second software subsystem; the online VOC analysis system, capable of 
supporting real time analysis of unknown VOC’s captured using a field deployable GC/MS 
system. Both subsystems will exploit algorithms and techniques developed as part of the 
MeDDL system described above as well as a probabilistic pattern recognition scheme previously 
utilized for processing synthetic-aperture radar data. 

8.2 Sampling Future Direction:  Exhaled Breath Collection and Biomarker Discovery 

Screening for VOC’s in exhaled breath was an important tool during previous aircraft 
investigations support by our laboratory. However, there were significant limitations in the 
assessment of the data as there were noteworthy levels of VOC’s observed in some incidents but 
it was not clear if those compounds were generated from physiological/ metabolic functions 
within an individual or from an environmental exposure that may have occurred during the flight. 
Additionally, the summa canister based method previously utilized [122] for sample     
collection, while very useful for trapping and analysis of VOC’s with boiling points near that of 
naphthalene and below, is not capable of releasing higher molecular weight compounds which 
compose the majority of fuels/fluids utilized on aircraft. On-going work by our group seeks to 
address the later of these concerns through both the characterization and evaluation of emerging 
and novel methodologies for breath collection (see Figure 29) as well as identification of breath 
markers of aviation relevant physiological states such as hypoxia, fatigue, and stress. 
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Figure 29: Gas Bag and TD Tube Time Series-Based Breath Collection Methods 
Gas bag and TD tube time series based breath collection methods currently utilized by our laboratory and 

collaborators for on-going breath biomarker discovery projects. 

These on-going experiments by our laboratory and collaborators seek to expand the 
understanding and ability to detect the complex VOC profiles that are likely to be present 
physiologically, occupationally, and in the environment so that we are better able to monitor and 
protect personnel in the future. The preceding, developed informatics tools and processing 
pipeline have created the foundation for these efforts and have provided our group a wonderful 
opportunity to successfully complete much of the work described. 

Bag  1st tube 2nd tube MultiRae 
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10.0 ACRONYMS 

2D-DIGE 2D Difference in-Gel Electrophoresis 

2D-SDS PAGE Sodium dodecyl sulfate – Polyacrylamide gel 
Electrophoresis 

AFB Air Force Base 

ANOVA Analysis of Variance

BFB Bromofluorobenzene

CCV Calibration Check Verification 

CO Carbon Monoxide

CO2 Carbon Dioxide

D-AAO D-Aminoacid Oxidase

DNA Deoxyribonucleic Acid

DoD Department of Defense 

EFS Environmental, Food and Safety 

EI Electron Impact 

EPA Environmental Protection Agency 

ESI Electro Spray Ionization 

FSOT Fused Silica Open Tubular 

GA Genetic Algorithm

GC/MS Gas Chromatography Mass Spectometry 

IEF Isoelectric Focusing

IP Intraperitoneal

JBER Joint Base Elmendorf Richardson 

KNN K-nearest neighbor

LC/MS Liquid Chromatography - Mass Spectometry 

LCS Laboratory Control Sample

LOD Limit of Detection 

LOO Leave-One-Out 

m/z Mass Over Charge

MALDI Matrix Assisted Laser Desorption Ionization 

MeDDL Metabolite Differentiation and Discovery Lab 
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MS Mass Spectrometry

MUPs Major Urinary Proteins 

MVC Model-View-Controller

NaNs Not a Number’s 

netCDF Network Common Data Form 

NIST National Institute of Standards and Technologies 

NMR Nuclear Magnetic Resonance 

O2 Oxygen

OBOGS On-Board Oxygen Generating System 

PCA Principal Component Analysis 

PDMS Polydimethylsiloxane

PMT Post Translational Modifications 

PTFE Polytetrafluoroethylene 

QToF Quadrupole Time-of-Flight 

ROC Receiver Operating Characteristic

RP Reversed Phase

RP-HPLC  Reverse-Phase High Pressure Liquid 
Chromatography 

RT-PCR Reverse Transcription Polymerase Chain Reaction 

SCX Stron Cation Exchange 

SELDI Surface Extraction Laser Desorption/Ionization 

SPE Solid Phase Extraction

SPME Solid phase Microextraction

TD Thermal Desorption 

TIC Total Ion Current 

TOF Time of Flight

UPLC Ultra Pure Liquid Chromatography 

USAF United States Air Force 

VOC Volatile Organic Compound 
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APPENDIX A - Software User Guide 

Please note: a complete, online version of the MeDDL user guide is available at: 
http://meddl.cs.wright.edu 

PEAK DATA 

The Peak Data tab contains the main data table and will also serve as the location of any external 
data files that you load. For more information about loading external data, see the entry 
on External Data. 

MAIN BUFFER 

This tab contains the main table that displays a summary of all of the registered peaks in a given 
data set. This table allows you to preform a variety of actions on any number of selected peaks. 
At the bottom of the table you will see a row of buttons that you will use to further analyze the 
data set. These include: Line Plot, Box Plot, PCA, Correlate, Data Table, and Copy. To find a 
peak in the Heat Map, simply right-click on it and a green circle will surround that peak. You also 
select multiple peaks and right-click on the selection to find multiple peaks in the Heat Map. 
Right-clicking once will only highlight peaks while you hold the right mouse button down. To 
lock highlighting around a peak, right-click twice. 

Line and Box Plot 

These plots will display a respective plot for each of the peaks selected. Be advised that you do 
not want to select too many peaks at one time because each plot will be displayed in a single 
figure. These buttons have two settings associated with them: Plot Display Group and Plot Color 
Group. These settings are defined in the Plot Filter tab. The Plot Display Group is the attribute 
that you wish to plot and the Plot Color Group is the attribute that you wish to use to split up the 
plots by. For example, if your data set has the attributes Strain (containing three possiblities: 
AKR, B6, and BALB_B) and MUP Protein (containing two possibilities: Intact and Denatured), 
then you can view a plot of the Strain versus MUP Protein by setting your Plot Display Group as 
Strain and Plot Color Group as MUP Protein. For a box plot this means that you will have two 
separate plots because you have two possible tags under attribute MUP Protein (Intact and 
Denatured) with each containing three boxes along the x-axis (one for each of the tags under the 
attribute Strain). For a Line Plot this means that you will have one plot that has each Strain along 
the x-axis with each MUP Protein as a different marker. 

The Line Plot is unique in that it provides access to the raw spectra data for a particular peak. 
You may double click on any of the plotted points in a line plot. This will open a summary 
window. Click the Explore button to view a peak in the raw spectra. The window can be 
dismissed using the Done button. 

PCA 

The PCA button will generate a 3D plot of the prinple components 
in the data set as well as generate a variance pareto graph. The PCA 
uses the last two attributes in a given data set to generate labels. For 
example, if your experiment.ini file contains the following 
attributes: [File Subject Strain MUP_Protein], then you will have a 
PCA labeled with all possible combinations of the tags for the last 
two labels. Again, if the attribute Strain has three tags: AKR, B6, 
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and BALB_b, and the attribute MUP_Protein contains two tags: Intact and Denatured, the PCA 
will have the labels: Denatured-AKR, Denatured-B6, Denatured-BALB_b, Intact-AKR, Intact- 
B6, and Intact-BALB_b. Note that you do not have to have any peak(s) selected to preform a 
PCA; the PCA is based off of the entire data set. 

Correlate 

The Correlate button will take a single selected peak and update the Rank column to contain a 
score for the correlation of the peaks in respect to the peak selected. The peak that was used to 
correlate from will have a score of 1.0. The correlate function will get the all of the intensities for 
a selected peak and pass them into the Matlab corr function. This will return a vector that is the 
same size as the main feature vector. This vector will contain Pearson product-moment 
correlation coefficients for each of the comparisons against the selected feature, which will be 
from -1.0 to 1.0. See the corr function for more information. 

CREATING A PARTITION 

To create a partition, simply type a label in the partition text box and click the 'Save Partition' 
button. After you create a partition it becomes the active partition on the group filter tab. This 
means that any groups you save will be saved within it. To change the active partition, change 
the selected partition in the partition combo box. 

CREATING A GROUP 

To create a group, you will need to have created a partition (see above). Once you have a 
partition, toggle the check boxes under each tag of your data that you wish to include in the 
group. Note that if only one field is selected under a given tag, MeDDL automatically inserts that 
field into the groups label. Once the check boxes are set for the group, click the 'Save Group' 
button. Remember that this group will be added to the active partition (whichever partition is 
selected in the partition combo box). You cannot save a group in the All partition. The groups 
within a partition must be mutually exclusive. 

Data Table 

The Data Table button will display a table for the selected
peaks that shows detailed information about the peak(s) 
across all of the samples/files. This detailed information 
includes data such as mass, intensity, and time.

GROUP FILTER 

The group filter tab allows users to create partitions and 
groups. For an explanation on partitions and groups, see 
the Data Management page. After users have created at 
least one group, they can begin to add groups to it. The All
partition is a default partition that contains all of the files.
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OUTLIER FILTER 

Summary 

Removes peaks that are outside of the range of the n number of standard deviations from the 
mean. This filter inhibits the use of the PCA functionality. Users specify the number of standard 
deviations to accept. Data outside of this range will not be shown throughout MeDDL. 

Pseudocode 

Factor is the user-defined parameter representing the number of standard deviations from the 
mean to accept. 

Theory 

The means and standard deviations are calculated across all of the files for each peak. Each value 
is checked to ensure that it is within the user-defined number of standard deviations from the 
mean.The figure on the left is was generated using the original data and the figure on the right 
was generated after the outliers were removed. A setting of 1 standard deviation was used in this 
case. 

TOTAL ION CURRENT (TIC) NORMALIZATION 

Summary 

Total Ion Current Normalization involves summing the intensities contained in each file of the 
spectra. The user selects which file to use as the seed file. The seed file will be used to build the 
normalization ratio. 

Pseudocode 

function computeTICs 

TICs = [] 

for i = 1 : number of features 

TICs = [TICs; sum(intensities(i, :))]

end 

return TICs 

mu = mean(intensities) 

stand = std(intensities) 

for i = 1 : number of files 

for j = 1 : number of features 

if(intensities(i, j) < (mu(j) - (factor * stand(j))) || outlierInten(i,j) > (mu(j) + (factor
* stand(j))))

intensities(i, j) = NaN 

end 

end 

end 



76 
Distribution A. Approved for public release; distribution unlimited. 

88ABW-2015-1753; Cleared 07 April 2015 

Theory 

As you can see in the above pseudocode, a TIC score is calculated for each file in the data by 
summing the intensities in said file. This array of TIC scores is returned to a different function 
that applies the normalization to the data. The seed TIC is simply the TIC score from the file that 
the user selects in a drop down box. The TIC vector becomes the right division of the seed TIC 
and TIC vector. That is, each score in the TIC vector becomes the seed TIC divided by the 
original TIC score. Note that this makes the normalization ratio for the seed file to be 1; the 
intensities in the seed file will remain unchanged. The normalization ratio is applied to all of the 
intensities within each file. 

OLYMPIC AVERAGE NORMALIZATION 

Summary 

The upper and lower percentiles are calculated for all of the features across each file. These 
percentiles are then used to normalize the intensity values in each file. Intensity values that 
become negative as a result of the normalization are replaced with NaNs. 

Enter the upper percentage and lower percentage in the respective text boxes. A setting of 90 and 
10 (as shown at the top of this page) will calculate the 10th and 90th percentiles. Thus, the data 
will be normalized using the upper and lower 10% of the data. 

Pseudocode 

It is understood that the variables lower_percentile and upper_percentile can be calculated in one 
line. For example, the following command would return an array containing the upper and lower 
percentiles: prctile(intensity, [lower, upper], 2) Here we break them up for simplicity. 

lower_percentile = prctile(intensity, lower, 2)

upper percentile = prctile(intensity, upper, 2)

for i = 1 : number of files 

normalizedIntensity(i,:) = (intensity(i,:) - lower_percentile(i)) / 
(upper_percentile(i) - lower_percentile(i)); 

end 

end 

TICs = computeTICs 

normailizationRatio = seedTic / TICs

for i = 1 : number of TICs 

intensity(i, :) = normailizationRatio(i) * intensity(i, :); 

end 
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Theory 

The upper and lower percentiles are calculated across all of the files using the user defined 
values. This gives us two vectors containing percentiles, each with a size of n by 1, where n is 
the number of features. These percentile vectors are used to normalize the intensity values for 
across each file. The difference of the original intensities in a file and the lower percentile value 
is divided by the difference of the upper and lower percentiles. This technique will scale down 
the intensities by several orders of magnitude. 

Consider the following Line Plots for the same peak. The left plot shows the original data and the 
right plot shows the data that has been normalized using the Olympic Average Normalization 
technique. The upper bound of the y-axis for the unnormalized data is 12 x 10^8 and the upper 
bound of the y-axis for the normalized data is 350. 

DATA FILTER 

The Data Filter tab contains all of the filtering methods that allow you to down select your data 
so that you can focus on significant data. These filters create objects called peak sets. A peak set 
can be viewed in the Visualization Tab or classified in the Machine Learning Tab. 

P- VALUE FILTER 

Summary 

The P-Value filter checks for statistical significance using ANOVA, calculating a p-value for 
each peak in study. After the p-values are calculated for each peak, a new feature vector is 
produced using the user defined p-value threshold (confidence bounds). This feature vector is 
saved as a peak set. 

Theory 

There are two options for the P-Value filter: 

 N-Way: performs an n-way ANOVA using the Matlab function anovan which
accepts all of the groups in the active partition. The features are down selected to be
only from files that are included in the active partition. The down selected features
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are sent to anovan. Thus, features from each file are compared to features from the 
remaining files. 

 Pairwise: performs a pairwise ANOVA using the Matlab
function anovan iteratively generating all possible combinations of the groups in the 
active partition. The indices of the comparisons relate to the indices of all nonzero 
elements in a strictly upper triangular matrix, i.e. 1 to 2, 1 to 3, 2 to 3, etc. Groups 
are not compared to themselves. 

TIME BINNING FILTER 

Summary 

The Time Binning Filter allows you to reduce GC-MS data that contains fragments caused by 
electron impact. 

Pseudocode 

Theory 

The Time Binning Filter drills down on the data set starting with the most intense peak of the 
data set. After the maximum peak is found, the peaks with times within ±t/2 from the time t0 are 
removed from the data, where t is the user defined time parameter and t0 is the time of the most 
intense peak in the data set. This process is repeated until all peaks are processed. 

The intensities in the 'maxIntensity' array are set to 0 as the data is processed to indicate that they 
are of no further interest. The array 'intensityLogical' is a pseudo-boolean array. 0's indicate 
features of no interest, 1's indicate potential interest, and 2's indicate an intensity index that is the 
maximum within the time window. 

while sum(maxIntensities > 0) 

maxIndex = max(maxIntensities);

intensityLogical(maxIndex) = 2;

maxIntensities (maxIndex) = 0;

timeCenter = timeAvg(maxIndex); 

upper = timeCenter + (deltaT / 2);

lower = timeCenter - (deltaT / 2);

index 
upper); 

= find( intensityLogical == 1 AND timeAvg >= lower AND timeAvg <

intensityLogical(index) = 0;

maxIntensities(index) = 0; 

end 
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FOLD CHANGE FILTER 

Summary 

The Fold Change Filter takes the average of each feature across all of the files that are included 
in a partition. This produces a group average vector for each group. The average vectors are 
divided by each other using right division, left division, a combination of both to produce a fold 
value vector (containing a fold value for each feature). Features with fold values that meet or 
exceed the user-defined threshold are kept. 

Pseudocode 

Theory 

The components of the resulting fold vector are compared to the threshold that the user defines 
and only those features that meet or exceed the threshold pass the filter. If there are more than 
two groups in the active partition, then pairwise comparisons of all of the groups are generated. 
As in the ANOVA filter, the indices of the comparisons relate to the indices of all nonzero 
elements in a strictly upper triangular matrix. The disjunction of all of the feature vectors from 
each of the pairwise comparisons is generated: features must meet the fold criteria in at least one 
fold comparison. 

The Fold Change Filter has the options to accept only positive or only negative folds that fulfill 
the threshold, where a positive fold is defined as the right division of A and B and a negative fold 
is defined as the left division of A and B. Note: we define left division as B(i, j) / A(i, j) and right 
division as A(i, j) / B(i, j). See MathWorks for more information. The default setting is absolute, 
which accepts a feature if either the left division or right division is greater than the set threshold. 
In the case of the absolute setting, the resulting fold value vector will contain the maximum fold 
change from either the left division or right division of the average matrices. 

 Absolute: Calculate the fold using both the left and right division of the pair of
matrices. The fold value will be the maximum for that feature from either matrix.

 Positive: Calculate the fold using the right division of the average vectors.

 Negative: Calculate the fold using the left division of the average vectors.

GROUP INTENSITY FILTER 

Summary 

The Group Intensity filter peaks that have an average intensity greater than the set intensity. 

left = B / A; 
right = A / B; 

if typeChange == absolute 
result = left >= foldChange OR right >= foldChange; 
value = max(left, right); 

else if typeChange == positive 
result = left >= foldChange; 

else 
result = right >= foldChange; 
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The Strict setting specifies whether or not all of the groups in the partition must pass the filter. If 
Strict is used the conjunction of the feature vectors is taken to produce the final peak set. 
Otherwise, the disjunction of the feature vectors is taken to produce the peak set. 

Pseudocode 
 

 

GROUP DISTRIBUTION 

Summary 

Group Distribution filters out peaks that do not fall within the given standard deviation in the 
group it is contained in. If the peak is more Standard Deviations away then the given value the 
peak is excluded from the final peak set. 

The Strict setting specifies whether or not all of the groups in the partition must pass the filter. If 
Strict is used the conjunction of the feature vectors is taken to produce the final peak set. 
Otherwise, the disjunction of the feature vectors is taken to produce the peak set. 

Pseudocode 
 

 
 

GROUP SEPARATION FILTER 

Summary 

This filter compares all possible pair-wise combinations of the groups. The means of both groups 
are calculated, then the difference is found between the mean of every peak in each group. If the 
separation of that peak is larger than the given separation value then the peak passes the filter and 
depending on strict or loose may or may not be included in the final peak set. 

The Strict setting specifies whether or not all of the groups in the partition must pass the filter. If 
Strict is used the conjunction of the feature vectors is taken to produce the final peak set. 
Otherwise, the disjunction of the feature vectors is taken to produce the peak set. 

for all samples in the group 

upper limit allowed = group average plus the standard deviations 
lower limit allowed = group average minus standard deviations 

 
if strict is selected on the filter tab 

filtered peaks = filtered peaks AND intensities that are less than 
the upper limit allowed AND intensities that are less than the 
lower limit allowed 

otherwise 
filtered peaks = filtered peaks OR intensities that are less than 
the upper limit allowed OR intensities that are less than the 
lower limit allowed 

for all samples in the group on the filter tab 
 

if strict is selected 
remaining peaks = all the peaks AND peaks with an average intensity 

greater than the given absolute intensity 

otherwise 
remaining peaks = all the peaks ORpeaks with an average intensity greater 

than the given absolute intensity 
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Pseudocode 
 

 

RATIO FILTER 

Summary 

There are two options for this filter, top heavy and singular. Top heavy squares the numerator of 
the equation used to find the ratios and singular does not. The filter calculates ratios based on a 
formula and returns the given amount of peaks with the highest ratios. The ratio is calculated by 
first generating all pair-wise combinations of the groups. Then the Standard Deviation and 
average intensities are calculated for each of those groups. Then the ratio is calculated by adding 
all the comparison combinations ratios together, ratios are calculate by the absolute value of the 
average of set one minus the average of set 2, intensity that is, divided by the standard deviation 
of set 1 times the standard deviation of set 2. The statistical significance would be finding peaks 
that are tightly formed and separated with respects to intensity. 

 

Top Heavy:  

Otherwise: 

for all possible combinations 
setA = means for set A 
setB = means for set B 

 
if strict is selected on the filter tab 

filteredPeaks = filteredPeaks AND peaks that pass |setA - setB| > 
separationFactor 

otherwise 
filteredPeaks = filteredPeaks OR peaks that pass |setA - setB| > 
separationFactor 
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Pseudocode 
 

 
 

MASS-TIME EXCLUSION WINDOW 

Summary 

The mass-time exclusion filter allows you to specify an exclusion window of mass and time. 
This can be done in two ways: manually or with the heat map. To manually specify an exclusion 
window, enter the upper and lower bounds for both mass and time, and then click the Add 
button. This will add the window to the table on the right. You may now enter another window 
and add it to the table or click the Apply button to generate a peak set that excludes all of the 
windows listed in the table. To specify a mass-time exclusion window using the heat map, 
simply left click and drag a selection box around the peaks that you wish to exclude. The 
coordinates (upper and lower bounds) of the selected region will be displayed in the text fields 
for the filter. You may click the Add button to add the window to the table or modify the upper 
and lower bounds by typing them in manually or by drawing a new selection on the heat map. 

MANUAL SELECTION 

Summary 

The Manual Selection Filter allows you to 
hand select peaks to be included in a 
feature vector. This can be used to include 
peaks of interest or to create a mask of 
peaks that are extraneous to your study. If 
the peaks are of interest, then you can 
view them as or logically OR them with 
another peak set. If they are extraneous, 
you can negate the feature vector and then 
AND the resulting peak set with any other 
peak set. 

Use the Select All/Deselect All to toggle 
all of the check boxes on or off, 
respectively. Use the toggle button to 

For all pairwise comparisons of the groups 

setAMu = means of set A 
setAStandardD = standard deviation of set A 
setBMu = means of set B 
setBStandardD = standard deviation of set B 

 
if top heavy is selected on the filter tab 
ratios = ratios + (setAMu - setBMu)^2 / (setAStandardD * setBStandardD) 
otherwise 
ratios = ratios + abs((setAMu - setBMu)) / (setAStandardD * 

setBStandardD) 
 

pick the n highest ratio peaks 
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invert the state of all of the check boxes. Finally, the Apply button will generate a peak set from 
the selected peaks. All of the columns in the table support sorting, including the check box 
column. Left click on the column header to sort in the features in decreasing order. Click the 
header again to sort in nondecreasing order. 

PEAK SET EDITOR 

The Peak Set Editor allows you to manage peak sets. Use the delete button to delete a selection  
of peak sets. The Ctrl key allows you to select more than one peak set. The Delete All button will 
delete all of the peak sets. 

MACHINE LEARNING 

MeDDL offers users with several types of classification methods. These methods use Matlab 
and Waikato Environment for Knowledge Analysis classifiers. Each of these allow users to 
classify data that is internal or external to MeDDL. The internal data classification allows users 
to classify the peak sets that they have created using the tool. The external data classification is 
currently designed to process a comma separated value file (.CSV). All classification methods 
support classifying intensities or ratios of intensities. 

MATLAB TREE CLASSIFIER 

 Greedy, sequential feature selection algorithm given by the sequentialfs Matlab 
function. 

 Uses a forward selection method (need to test the results of a reverse selection 
method). 

 If data has been filtered using the fold filter, the data will be sorted so that the fold 
values are in descending order. 

 User specifies the number of features to select and the number of folds for cross 
validation. 

 Allows the user to visualize the results by displaying a tree for the desired peak(s) 
or a bar graph of the peak(s). The tree is often a simple decision stump, but can 
have more depth to it. The bar graphs list the files along the x-axis and show the 
intensities for each file along the y-axis. 

Pseudocode: 
 

 
 

As you can see, the sequentialfs method is very important in the classification method. It picks 
what features are important by adding them and seeing if classification performance is improved 
upon. Classification performance is generated by using the ClassificationTree.fit method. This 

Initialize features vector to zeros while number of features is less than the 
requested number 

Call the sequentialfs function 

**The sequentialfs function uses the functions ClassificationTree.fit and 
predict to produce a classification score. 

Add the newly selected features to the features vector 

end 
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method produces a tree. The tree is then used to classify the data using the predict method. The 
classifier’s labels are compared to the actual labels to produce a score. 

MATLAB SVM CLASSIFIER 

 Same greedy, sequential forward selection algorithm as the tree classifier 
(sequentialfs). 

 Uses the svmtrain Matlab function. 

 Allows users to display a bar graph of the selected peak(s) as described above. 

The code for the SVM classifier is fairly similar to that of the Tree classifier. The primary 
difference is that the sequentialfs method uses the methods svmtrain and svmclassifiy to produce 
a score for the feature. Based on this score, sequentialfs decides whether the feature is kept or 
removed. 

WEKA SVM CLASSIFIER 

 Support vector machine using sequential minimal optimization (SMO) technique. 

 Uses training and test sets. If no test set is given, the training will be cross validated. 

 The number of folds for the cross validation is specified by the user. 

 If a test data set is not supplied, a dialog box is displayed with information about the 
classifier’s performance, including a confusion matrix. If a test set is supplied, then a 
summary of the accuracy percentages for each of the samples in the test set is 
displayed. 

Pseudocode: If a test set is supplied the program preforms the following: 
 

 

Load the two files and convert their structures to an .ARFF format 

Extract the data and set the class indices 

Instantiate the WEKA classifier 

Build the classifier based on the training set 

For each instance in the test set 

classify the nth instance (this returns a label) 

compare the label from the above line and the real label 

end 

Calculate the accuracy and display a summary dialog 
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If a test set is not supplied the program performs the following: 
 

 

WEKA SVM ATTRIBUTE SELECTOR 
 

 Support vector machine using sequential minimal optimization (SMO) technique. 

 The number folds for cross validation and attributes to select are specified by the 
user. 

 Accepts one file to use as a training data set. 

 Displays a dialog box with information about the selected attributes. 
 

 

 
Load the file and convert its structure to a .ARFF format 
Extract the data and set the class index 
Instantiate an instance of AttributeSelection, SVMAttributeEval, and Ranker 
Set the evaluator of the AttributeSelection as the SVMAttributeEval and the 
search as the Ranker 
Run the attribute selection 

Instantiate an instance of Evaluation with the training set 

Call the crossValidateModel function of the instance of Evaluation with the
following arguments: 

the 

the 

the 

the 

type of classifier (SMO in this case) 

training set 

number of folds for the cross validation

options for 

a pseudo-random 

Display the results 

the classifier 

seed 

in a dialog window
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APPENDIX B - Peak Alignment Validation 

Peak Alignment v2.0 (MeDDL Modification) 
 

 
 Below are typical landmark volatile peaks observed in male murine urine: 

 

 
 
 

Average Mass  Average Time Compound ID

(57)  7.92‐8.51 3‐heptanone

(60), 115, 128  14.72‐15.32  2‐sec‐butyl‐4,5‐dihydrothiazole    [SBT] 

(71),41,93,121  16.97‐17.72  linalool 

 
 Top figure is EI spectra for SBT 

 Below is diagram defining a unique 2-way match used in MeDDL for alignment 

 Registration windows (time and m/z) are defined in peak.ini by user prior to 
registration 

Reference LC‐MS Sample  LC‐MS Sample 
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28.81

Example Study Details: 

Date range of raw files: 1/20/2011 – 10/4/2011 

N=151 

 
Exposure group date of analysis: 

 

 FT1 1/20/2011 

 BP1 1/31/2011 

 BM2 2/16/2011 

 BP2 2/23/2011 

 YP2 8/6/2011 

 CTR1 8/24/2011 

 BA2 9/11/201 

 BA3 10/1/2011 
 

Experimental Time Shift: 

To accurately register this study, taking into account the 9 month length of analysis, it is 
necessary to determine time and mass variation of a subset of the above landmark peaks in 
murine urine. Samples from the C (48hr) timepoint will be used as these are present in each 
exposure group tested. 

 
 

Samples used for peak landmark comparison: 
FT1_DBA_17_C 

d:\data\...\raw files\yp2_dba_57_c 8/8/2011 12:11:32 PM Mouse#57 
 urine   

BP1_DBA_25_C RT: 0.00 - 80.03 
2.45 

100 

 
 
 

13.32  14.72 

 
 

NL: 
1.58E8 
TIC MS 

BM2_DBA_41_C 
50 

 
0 

100 

4.35 

 
2.45 

9.15 11.43 19.38 22.88  25.09 30.02 35.85 
 

42.63 44.43 
 

52.40  57.82  59.76 66.05 
 

74.25  76.17 

BA2_DBA_7 
3_C 

 
NL: 
2.83E8 

BP2_DBA_49_C 

YP2_DBA_57_C 

 
50 

 
0 

100 
 

50 

 
4.36       9.19 

2.68 
 
 

4.79 

13.35  14.76 

16.38 
 

 
13.90 

15.30 

 
 

22.92 27.07 30.07  32.04 40.55 42.35  46.62 

 
 

54.35  58.02  62.03  64.00 

 
 

70.60 72.40 

 
 

76.98 

TIC MS 
yp2_dba_57 
_c 

 
NL: 
1.40E9 

TIC MS 
bm2_dba_41 

CTR1_DBA_65_C 
 

0 
100 

 

2.67 

6.56 11.95 16.87 23.45 24.49 30.59 36.46  40.57 43.52   47.68  50.40  53.71  56.82  62.46 64.51     70.71  73.99  77.33  
_c

 

NL: 
1.78E9 

 50 4.78 
13.90  15.30 TIC MS 

bp1_dba_25 

BA2_DBA_73_C  
0 

100 

 

2.69 

9.67 11.94 
16.87 23.45  26.83 30.59 36.46   37.43  43.68 47.21 50.13  53.46  57.36  62.33  64.89 69.23   73.51  77.08 

_c 
 

NL: 
1.08E9 

BA3_DBA_81_C 13.95 
50 4.82 15.32 

TIC MS 
bp2_dba_49 

 
0 

100 
 

50 

 

2.44 
 
 

4.35 

6.61 10.93 
 

 
13.33 
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Current registration settings/algorithm not accurately capturing and registering peak (see 
below scatterplot). 
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Delta-T Histogram approach: Calculation of chromatographic region/binned (delta T – 
Chromatographic time shift) histograms 

 Generate discrete histograms of the time deltas for misaligned peaks (comparing 
reference image to new candidate images) 

 Only unique, 2-way peak matches are utilized by MeDDL for generating alignment 
via polynomial fit. 

 Purpose of new function is to down-select identified unique two-way matches 
for generation of accurate curve for polynomial fit capable of aligning 
significant time shifts observed. 

 Utilized both static and dynamic deltaT bin sizes (in number of peaks and time 
windows) 

 Initially considered discarding first few minutes due to compounds eluting 
irrespective of column properties (bimodal deltaT distribution noted). 

 DeltaT histograms demonstrated logarithmic increase in time shift over 
chromatographic time (NOT linear) 

 Resulting alignment correction (polyfit) using deltaT distributions limited to third 
order polynomial as this showed best results 

Below are two examples of the misalignment from different time regions: 
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Generated DeltaT histograms, static 2 minute time window: 

2 Sample Histogram Alignment Example: 
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Optimization of number of Bins Per Histogram would be Required. 10 appears to provide 
adequate resolution for this example. 
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taT Histogram Composite Del 

Static 5 Minute Window: 
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 To attempt to increase accuracy in polyfit and reduce bias in generated deltaT bins 
due to the peak density, bin sizes were next evaluated dynamically. 

 The bin time window increased using defined steps until a bin minimum peak count 
is achieved (both parameters user specified in the peak.ini). 

[HistStep PeaksPerHist] 

0.01 10 

 Below figures show example of dynamic bins and resulting corrective 
polynomials/residuals. 

 Note that in the 0-2.6 min window, a single cluster of 20 peaks exceeds the 10 peak 
threshold for bin creation. 

 This is due to the “hard ionization” EI method utilized causing a large number of 
fragment peaks generated for a single compound (example below) 

 Thus a single bin step can incorporate this molecular “bundle”, and induce the 
bias/bimodal distributions noted in the deltaT histograms. 
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 Therefore, for GC/MS by EI, we MUST utilize a variant of our time binning filter 
algorithm in the down-selection of unique two way matching peaks to be used for 
polynomial fitting as the EI fragmentation patterns too heavily weight individual 
molecular peaks. 
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Time Binned Down Selection of Unique Two Way Matches: 

 Utilizes a modification of the time-bin algorithm originally created as a filter for EI 
spectra differential profiling described as follows: a supplementary time-binned, 
fold change algorithm which was labeled as “hard ionization”. In the “hard 
ionization” method, the analyst specified both a time window and peak intensity 
threshold for comparison. The comparison then proceeded as follows: an averaged 
composite image of each user-defined comparative group was generated; the most 
intense peak from all comparative groups was evaluated across all aligned images 
using criteria specified; once the comparison was completed, this “time slice” based 
upon the peak apex ± ½ of the specified time window is removed from further 
analysis and the next most intense set of peaks are compared. 

 Application of time binning in the matched peak set allows for the logical and 
chromatographically distributed down-selection of the most predominant (intense) 
unique two-way matching peaks and avoids the weighting issues observed in deltaT 
binning (artifact of EI). 

 This algorithm may be turned on/off and the time window parameter specified by 
the user prior to registration in the peak.ini (below). 
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Time Binning 2 Sample Validation: 

 2 Sample Validation: Approximate 0.6min shift easily observed. 

 Note that previous images show linear fitting inadequate for proper alignment. 

 Binning studies show that this shift increased rapidly in the first 4 minutes. 

 Due to observed behavior, alignment of the first few chromatographic minutes 
likely most problematic 

 No significant peaks observed after 37 minutes 
 
 

Example Registered Peak Table used for Verification: 
 

Intensity UnalignedTime MatchedTime 

 
Pk74 

 
1 

BP2_DBA 

_49_C 

2011 02 

25 
 
BP 

 
DBA 

 
49 

 
48 

 
A_UNSTR

 
155

 
43.9281

 
1.63E+07

 
1.3185

 
1.3105 

 
43.9268 

 
23593

   
2 

BA2_DBA 

_73_C 

2011 09 

13 
 
BA 

 
DBA 

 
73 

 
48 

 
A_UNSTR

 
147

 
43.9502

 
1828209

 
1.2524

 
1.4042 

 
43.9489 

 
8690

 
Pk7 

 
1 

BP2_DBA 

_49_C 

2011 02 

25 
 
BP 

 
DBA 

 
49 

 
48 

 
A_UNSTR

 
161

 
58.0244

 
2.29E+07

 
1.3685

 
1.3604 

 
58.0234 

 
24580

   
2 

BA2_DBA 

_73_C 

2011 09 

13 
 
BA 

 
DBA 

 
73 

 
48 

 
A_UNSTR

 
164

 
58.0181

 
2732492

 
1.3932

 
1.5575 

 
58.0148 

 
9858

 
Pk57 

 
1 

BP2_DBA 

_49_C 

2011 02 

25 
 
BP 

 
DBA 

 
49 

 
48 

 
A_UNSTR

 
216

 
42.9806

 
2.63E+07

 
1.8245

 
1.8159 

 
42.9793 

 
33562

   
2 

BA2_DBA 

_73_C 

2011 09 

13 
 
BA 

 
DBA 

 
73 

 
48 

 
A_UNSTR

 
202

 
42.9901

 
2289576

 
1.7083

 
1.8995 

 
42.9891 

 
12836

 
Pk559 

 
1 

BP2_DBA 

_49_C 

2011 02 

25 
 
BP 

 
DBA 

 
49 

 
48 

 
A_UNSTR

 
228

 
206.9607

 
2.26E+07

 
1.924

 
1.9153 

 
206.9314 

 
35821

   
2 

BA2_DBA 

_73_C 

2011 09 

13 
 
BA 

 
DBA 

 
73 

 
48 

 
A_UNSTR

 
211

 
206.9519

 
2583981

 
1.7828

 
1.9802 

 
207.0146 

 
13847

 
Pk287 

 
1 

BP2_DBA 

_49_C 

2011 02 

25 
 
BP 

 
DBA 

 
49 

 
48 

 
A_UNSTR

 
272

 
71.9965

 
9676288

 
2.2885

 
2.2796 

 
71.9952 

 
44684

   
2 

BA2_DBA 

_73_C 

2011 09 

13 
 
BA 

 
DBA 

 
73 

 
48 

 
A_UNSTR

 
253

 
72.0009

 
215830

 
2.1313

 
2.357 

 
71.9969 

 
19575

 
Pk893 

 
1 

BP2_DBA 

_49_C 

2011 02 

25 
 
BP 

 
DBA 

 
49 

 
48 

 
A_UNSTR

 
286

 
56.0603

 
291657

 
2.4047

 
2.3956 

 
56.0593 

 
47465

   
2 

BA2_DBA 

_73_C 

2011 09 

13 
 
BA 

 
DBA 

 
73 

 
48 

 
A_UNSTR

 
263

 
56.0837

 
52237

 
2.2141

 
2.4463 

 
56.0806 

 
‐20800
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Time Binning 8 Sample Validation: 

 Subset of sample validated: Limited to 8 by Thermo Xcalibur in number of spectral 
overlays possible 

 Shifts similar to 2 sample validation 
 
 
 

  
 
 
 
 
 
 
 

d:\data\...\multitest\bp2_c57_53_c 2/25/2011 8:24:44 PM Mouse#53 
urine 

 

RT: 0.00 - 80.03 
2.69 

100 

 
 
 
 

13.95 

 
 

NL: 
1.00E9 
TIC MS 

RT: 0.00 - 80.03 
2.69 

 
NL: 

50      4.83 15.32 
11.99 23.47 30.60 36.49 43.39 47.45 53.52 

 
66.72 71.59 

bp2_c57_53 
_c 

 
2.68 

2.45 

2.69 13.96 1.00E9 

TIC  MS 
bp2_c57_53 

0  
2.69 

100 
 

 
13.95 

100 _c 
NL: 

50      4.82 15.32 
19.95 

95 
1.08E9 

90 TIC  MS 
bp2_dba_49 

0 

100  2.68 
13.96 

 
15.33 

85 _c 

80 NL: 
7.26E8 

75 TIC  MS 
bp2_dba_50 70 _c 

50      4.82 

0  
2.69 

100 
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13.94 15.34 

bp2_dba_50 
_c 

NL: 
9.36E8 
TIC MS 

13.95 
65 

 
NL: 
9.36E8 

50      4.83 11.99   16.91 23.47 30.60 36.49 40.40 45.98 51.85 65.92 70.59 78.85 
bp2_dba_52

 

60 13.94 
13.95 
 
14.72 

TIC  MS 
bp2_dba_52 

0   
2.45 

100 
NL: 
1.84E8 

55 
13.32 

50 13.32 15.34 

_c 

NL: 
1.84E8 

50      4.36 
13.32 14.72 

6.02    16.34 22.89 30.02 

 
 

32.50 42.76 47.03 

 
 

59.67 66.15 72.22 

TIC MS 
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_c 
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14.73 

40 4.82 
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4.36 

 

15.32 

TIC  MS 
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_c 
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1.80E8 

0   
2.45 

100 
 

50      4.35 

 

13.32 14.72 
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1.80E8 
TIC MS 
ba2_c57_79 

59.45 68.21 72.33 78.66 _c 

30 

25 
11.99 

20 
6.60 15 11.42 

 

16.91 
 
 
 

23.47 

TIC  MS 
ba2_c57_79 
_c 

NL: 
1.58E8 
TIC  MS 

0   
2.45 

100 
 

50 
 0   

2.45 

 

13.32 14.72 

11.43     19.38 22.88 30.02 35.85 42.63 46.08 

 
 
 

 
59.76 66.05 
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1.58E8 
TIC MS 
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76.17 _c 
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19.95 

16.34 

30.60 
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100 NL: 

2.17E8 

5 16.35 27.02 36.49  40.40 45.98  54.80      65.92 70.59  78.85 NL: 50      4.37 14.73 TIC MS 
25.09 

0 

35.85  42.63 45.63 59.76 66.05 76.17 2.17E8 

TIC  MS 

6.03 19.38 22.89 30.02 35.85 42.32 46.57 
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60.50 64.47 72.34 
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 The 0-4 minute time range arguably best illustrates the power of this method for EI 
GC/MS alignment (note peaks at 1.37 and 1.82 minutes). 
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 Please note response of pk437 and pk1892 (4.82 min). 
 

RT: 4.15 - 24.07  
 

13.95 

 
NL: 
5.11E8 100 4.83 15.32 TIC  MS 

50 

0 

100 

6.60  
8.51 9.72 11.99  

 
13.95 

16.91  
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50 
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100 
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 Registration of the leading shoulder can be eliminated through the time binning 
filter with a 0.1 min window (verified) 

 Not artifact, as new registration algorithm only down-selects 2 way matches used 
for alignment and does not affect peak detection. 

 

 
Pk437 

 
1 

BP2_C57_ 

53_C 

2011 02 

25 

 
BP 

 
C57 

 
53 48 A_UNSTR 577 125.9954 4.73E+07 4.8172 

 
4.7937 125.9941 115595

   
2 

BP2_DBA 

_49_C 

2011 02 

25 

 
BP 

 
DBA 

 
49 48 A_UNSTR 577 125.9956 5.11E+07 4.8172 

 
4.7985 125.9939 110748

   
3 

BP2_DBA 

_50_C 

2011 02 

25 

 
BP 

 
DBA 

 
50

 
48

 
A_UNSTR

 
577

 
125.9974

 
3.13E+07

 
4.8172 

 
4.7972

 
125.9935

 
114649

   
4 

BP2_DBA 

_52_C 

2011 02 

25 

 
BP 

 
DBA 

 
52 48 A_UNSTR 578 126.0016 4.38E+07 4.8253 

 
4.802 126.0033 116725

   
5 

BA2_C57 

_78_C 

2011 09 

13 

 
BA 

 
C57 

 
78 48 A_UNSTR 521 125.9819 6808069 4.3529 

 
4.7263 125.9872 65118

   
6 

BA2_C57 

_79_C 

2011 09 

13 

 
BA 

 
C57 

 
79 48 A_UNSTR 521 126.0349 6433989 4.3529 

 
4.7304 126.0305 64539

   
7 

BA2_DBA 

_73_C 

2011 09 

13 

 
BA 

 
DBA 

 
73 48 A_UNSTR 521 125.983 6293168 4.3529 

 
4.7294 125.9796 57477

   
8 

BA2_DBA 

_74_C 

2011 09 

13 

 
BA 

 
DBA 

 
74 48 A_UNSTR 523 125.9842 8536832 4.3695 

 
4.7415 125.9808 ‐65652

 
Pk1892 

 
1 

BP2_C57_ 

53_C 

2011 02 

25 

 
BP 

 
C57 

 
53 48 A_UNSTR 577 125.9954 4.73E+07 4.8172 

 
4.7937 125.9941 ‐115595

   
2 

BP2_DBA 

_49_C 

2011 02 

25 

 
BP 

 
DBA 

 
49 48 A_UNSTR 554 126.0493 103342 4.6266 

 
4.6088 126.0476 105737

   
3 

BP2_DBA 

_50_C 

2011 02 

25 

 
BP 

 
DBA 

 
50 48 A_UNSTR 580 125.0734 95976 4.8422 

 
4.822 125.0694 115301

   
4 

BP2_DBA 

_52_C 

2011 02 

25 

 
BP 

 
DBA 

 
52 48 A_UNSTR 577 126.0429 4.23E+07 4.8172 

 
4.794 126.0446 ‐116493

   
5 

BA2_C57 

_78_C 

2011 09 

13 

 
BA 

 
C57 

 
78 48 A_UNSTR 521 125.9819 6808069 4.3529 

 
4.7263 125.9872 ‐65118

   
6 

BA2_C57 

_79_C 

2011 09 

13 

 
BA 

 
C57 

 
79 48 A_UNSTR 521 126.0349 6433989 4.3529 

 
4.7304 126.0305 ‐64539

   
7 

BA2_DBA 

_73_C 

2011 09 

13 

 
BA 

 
DBA 

 
73 48 A_UNSTR 521 125.983 6293168 4.3529 

 
4.7294 125.9796 ‐57477

   
8 

BA2_DBA 

_74_C 

2011 09 

13 

 
BA 

 
DBA 

 
74 48 A_UNSTR 523 125.9842 8536832 4.3695 

 
4.7415 125.9808 ‐65652
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Peak Shoulder Registration: 

Increasing baseline to 300K absolute eliminates registration of shoulder peaks. 

Old registration parameters New registration parameters 

  

 
Resulted in 2422 peaks detected Resulted in 918 peaks detected 

[minIval] [minIval] 

25000 100000 

[HotPeakTH] [HotPeakTH] 

50000 300000 
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D:\Data\...\MultiTest\BP2_C57_53_C 2/25/2011 8:24:44 PM Mouse#53 
urine 

RT: 1.20 - 5.55 
 

1.82 

 
 
 
 

NL: 
1.00E9 

5.5 
 

 
5.0 

 

 
4.5 

 

 
4.0 

 

 
3.5 

 
 
 
 
 
 
 
 

1.37 
 
 

 
1.39 
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1.82 
 

1.71 
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1.71 
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2.29 
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5.30 

TIC MS 
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_C 
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1.08E9 
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Additional manual examination of right combined spectra demonstrate that use of above peak.ini 
parameters resulted in no missed significant peaks and no duplicate registration of leading/tailing 
edges. 

Conclusion: No overlap in peak registration (shoulders) for same mass seen when 
baseline increased to 300K absolute. 
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APPENDIX C - Peak Normalization 

Normalization Test (8 Sample) 

Purpose: To evaluate the effect of normalization on stress study data (8 sample example) 

Example Study Details: 

Date range of raw files: 1/20/2011 – 10/4/2011 

N=151 
 
 

Exposure group date of analysis: 
 

 

 

 
 

Decreased Sensitivity: 

To accurately analyze this study, normalization of some type is required. Following the 6 month 
down-time of Feb – Aug, a significant decrease in sensitivity was noted. Samples from the C 
(48hr) timepoint will be used for validation as these are present in each exposure group tested. 

Samples used for peak landmark comparison: 

FT1_DBA_17_C 

BP1_DBA_25_C 

BM2_DBA_41_C 

BP2_DBA_49_C 

YP2_DBA_57_C 

CTR1_DBA_65_C 

BA2_DBA_73_C 

BA3_DBA_81_C 

Group A 

 FT1 1/20/2011 

 BP1 1/31/2011 

 BM2 2/16/2011 

 BP2 2/23/2011 

 YP2 8/6/2011 

 CTR1 8/24/2011 

 BA2 9/11/201 

 BA3 10/1/2011 

Group B 
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Summary of Major Peaks: 

Numbers for UnNorm, TIC Norm, and Olympic represent the relative fold change between 
analysis time groups (A/B) referenced above. 

 
 

 

R.T. 

 

Peak 

 
UnNorm 

TIC 
Norm 

 

Olympic

2.7  126  5.51  1.09  1.15 

4.78  152  6.18  1.03  1.02 

6.54  153  6.3  1.04  1.02 

13.93  141  6.56  1.11  1.06 

15.32  60  4.57  1.29  1.35 

19.95  131  5.31  1.1  1.13 
 

Olympic used 80/20% 
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